首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Leaf dry mass per unit leaf area (LMA) is a central trait in ecology, but its anatomical and compositional basis has been unclear. An explicit mathematical and physical framework for quantifying the cell and tissue determinants of LMA will enable tests of their influence on species, communities and ecosystems. We present an approach to explaining LMA from the numbers, dimensions and mass densities of leaf cells and tissues, which provided unprecedented explanatory power for 11 broadleaved woody angiosperm species diverse in LMA (33–262 g m?2; R2 = 0.94; < 0.001). Across these diverse species, and in a larger comparison of evergreen vs. deciduous angiosperms, high LMA resulted principally from larger cell sizes, greater major vein allocation, greater numbers of mesophyll cell layers and higher cell mass densities. This explicit approach enables relating leaf anatomy and composition to a wide range of processes in physiological, evolutionary, community and macroecology.  相似文献   

3.
  总被引:1,自引:0,他引:1  
Explaining the mechanisms that produce the enormous diversity within and between tropical tree communities is a pressing challenge for plant community ecologists. Mechanistic hypotheses range from niche-based deterministic to dispersal-based stochastic models. Strong tests of these hypotheses require detailed information regarding the functional strategies of species. A few tropical studies to date have examined trait dispersion within individual forest plots using species trait means in order to ask whether coexisting species tend to be more or less functionally similar than expected given a null model. The present work takes an alternative approach by: (i) explicitly incorporating population-level trait variability; and (ii) quantifying the functional beta diversity in a series of 15 tropical forest plots arrayed along an elevational gradient. The results show a strong pattern of decay in community functional similarity with elevation. These observed patterns of functional beta diversity are shown to be highly non-random and support a deterministic model of tropical tree community assembly and turnover.  相似文献   

4.
植物的叶片与细根分别作为植物体地上和地下部分重要的营养器官, 很多功能性状在二者之间存在着一定的关联性。研究这种关联有助于理解植物各性状之间的相互作用、植物生长过程中对资源的利用和分配, 以及建立细根性状的估算模型。该研究对内蒙古锡林河流域65种植物叶片与细根的氮(N)含量、磷(P)含量、N:P以及比叶面积(SLA)和比根长(SRL)进行了比较研究, 结果表明: 在种间尺度上, 叶片与细根间的N、P和N:P存在显著的相关性, 而SLASRL之间相关性较弱; 在种内尺度上, 叶片和细根的N、P及SLASRL, 在不同的物种中呈现出不同的趋势。此外, 叶片与细根性状的关联, 在不同的植物功能群之间存在差异。例如, 双子叶植物叶片与细根间的N含量显著相关, P含量不相关; 而单子叶植物二者之间的P含量显著相关, N含量无关联。该研究的主要结论是, 在相对一致的生境中, 植物叶片与细根性状的关联主要发生在不同物种之间, 在种内尺度上这种关联不明显, 这可能与植物功能性状在种内存在较小的变异幅度有关。  相似文献   

5.
东灵山地区不同森林群落叶功能性状比较   总被引:20,自引:11,他引:20       下载免费PDF全文
宝乐  刘艳红 《生态学报》2009,29(7):3692-3703
植物功能性状(plant functional trait)是近年来生态学研究的热点.其中叶功能性状(leaf functional trait)与植株生物量和植物对资源的获得、利用及利用效率的关系最为密切.研究了东灵山地区叶功能性状之间的关系、叶功能性状与地形因子的关系,并对不同群落叶功能性状进行了比较.通过Pearson相关分析发现,叶干物质含量(LDMC)与比叶面积(SLA)、叶氮浓度(LNC)、叶磷浓度(LPC)、叶钾浓度(LKC)负相关;叶大小与叶厚度正相关;SLA与 LNC、LPC、LKC正相关;LNC与LPC、LKC正相关;LPC与LKC正相关.通过灰色关联度分析发现,对叶大小、LNC、LKC来讲,海拔是各项地形因子中的首要影响因子;对LDMC、叶厚度来讲,坡度对其影响最大;对SLA、LPC来讲,坡位是其首要影响因子.依据乔木层的SLA和LDMC将5种群落分成3类,第一类是黑桦林和山杨林,第二类是辽东栎林,第三类是胡桃楸林和糠椴林.群落的分类情况符合该地带性植被优势度类型的分类情况,LDMC和SLA是最能体现群落间差异的叶功能性状.  相似文献   

6.
湖北后河保护区珙桐的叶功能性状研究   总被引:1,自引:0,他引:1  
该研究分析了珙桐群落主要叶功能性状之间的关系,比较了珙桐与林分其它优势树种以及珙桐Ⅰ级(胸径dbh<2.5cm)、Ⅱ级(dbh2.5~22.5cm)和Ⅲ级(dbh>22.5cm)3个龄级间叶功能性状上的差异.结果表明,珙桐的比叶面积(SLA)与单位质量的叶建成成本(CCm)、单位面积的叶建成成本(CCa)呈显著负相关(p<0.01).通过与林分其它优势树种相比较,珙桐具有较高的SLA、单位的质量的叶氮含量(Nmass);而CCmCCa、单位面积的叶氮含量(Narea)却相对较低,这表明珙桐能较有效地利用有限资源.珙桐不同龄级的最大光合速率(Amax)、暗呼吸速率(Rd)、光补偿点(LCP)和光饱和点(LSP)均表现为珙桐Ⅲ级>Ⅱ级>Ⅰ级,而SLA则表现为Ⅰ级>Ⅱ级>Ⅲ级(p<0.05).尽管珙桐Ⅰ级在林下表现出较强的弱光适应能力,但在后期建成为Ⅱ级的过程中,叶片形态与光合生理特性均表现出对遮荫环境的不适应,光资源不足可能是珙桐种群更新受限的主要限制因子之一.  相似文献   

7.
随着叶片功能性状研究的不断深入, 通过简单易测量的叶片指标, 同时探究植物生活史权衡对策和估算林分生产力的研究需求日益增长, 例如叶干质量比(LDMC)和比叶面积(SLA)的相互转换。杉木(Cunninghamia lanceolata)是亚热带重要的常绿针叶树种, 基于LDMC对杉木SLA进行估算, 能够为核算SLA提供途径, 为机理解释和生产估算构建连接途径, 为小区域到大尺度、精算到估算搭建桥梁。该研究在湖南会同和河南信阳两个杉木生长区, 对处于不同小生境(坡向、坡位和冠层深度)以及不同生活史(林龄和叶龄)的叶片进行抽样和采集, 通过测得不同叶龄的单叶LDMCSLA, 初步探究在不同因子下两个性状值的分布差异, 进一步基于LDMC构建SLA估算模型并讨论以叶龄为差分因子对模型的影响。结果表明: 1)杉木SLA平均值为(103.15 ± 69.54) cm 2·g -1, LDMC为0.39 ± 0.11; 2)杉木LDMCSLA可用非线性模型进行估算, 模型符合估算要求; 3)其中一年生叶的拟合效果最好, 老叶(大于二年生叶)的拟合优度较低, 老叶较低的SLA (52.28-75.74 cm 2·g -1)可能暗示LDMC的变化保持相对独立性。该研究基于杉木LDMCSLA估算模型可信且有效, 且不同叶龄对LDMCSLA的影响可能预示着杉木叶片的响应敏感性和生活史权衡策略。  相似文献   

8.
9.
The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.  相似文献   

10.
Phenotypic traits differ between plants in different environments and within individuals as they grow and develop. Comparing plants in different environments at a common age can obscure the developmental basis for differences in phenotype means in different environments. Here, we compared trait means and patterns of trait ontogeny for perennial (Viola septemloba) plants growing in environments that differed in quality either naturally or due to experimental manipulation. Consistent with predictions for adaptive stress resistance, plants grown in lower-quality environments allocated proportionately more biomass to roots and rhizomes, and produced smaller, thicker and longer-lived leaves. The developmental trajectory of almost all traits differed between environments, and these differences contributed to observed differences in trait means. Plants were able to alter their initial developmental trajectory in response to an increase in resources after 8 wk of growth. This result contrasts with previous findings, and may reflect a difference in the way that annual and perennial species respond to stress. Our results demonstrate the complexity of interactions between the environment and the development of the phenotype that underlie putatively adaptive plastic responses to environment quality.  相似文献   

11.
    
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one.  相似文献   

12.
  总被引:4,自引:0,他引:4  
Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8–16 years in eight successional rainforests. We tested whether successional changes in diversity–Δbiomass correlations reflect predictions of niche theories. Diversity–Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid‐successional stands, high biodiversity was associated with greater mortality‐driven biomass loss, i.e. negative selection effects, suggesting successional niche trade‐offs and loss of fast‐growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.  相似文献   

13.
    

Aim

Leaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine-learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco-evolutionary optimality theory, to yield predictions of spatio-temporal patterns in leaf traits that can be independently evaluated.

Innovation

Global patterns of community-mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf-level measurements and/or remote-sensing methods, which are an increasingly important source of information on spatio-temporal variation in plant traits.

Main conclusions

Model predictions evaluated against site-mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species-level Nmass, and increasing community-level SLA, have both been recently reported and were both correctly predicted. Leaf-trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf-trait responses to environmental change.  相似文献   

14.
    
Large‐fronded tree ferns are critical components of many tropical forests. We investigated frond and whole‐plant allometries for Hawaiian keystone species Cibotium glaucum, for prediction and to compare with global scaling relationships. We found that C. glaucum fronds maintain geometric proportionality across a wide range of plant and frond sizes. These relationships result in strong allometries that permit rapid field estimation of frond size from simple linear dimensions. C. glaucum frond allometries complied with intra‐ and interspecific global trends for leaf area versus mass established for much smaller‐leafed species, indicating ‘diminishing returns’ in photosynthetic area per investment in mass for larger fronds. The intraspecific trend was related to declining water content in larger fronds, but not to a significantly larger investment in stipe or rachis relative to lamina. However, C. glaucum complied with the global interspecific trends for greater allocation to support structures in larger leaves. Allometries for frond number and size versus plant height showed that as plants increase in height, frond production and/or retention progressively declines, and the increases of leaf size tend to level off. These frond and whole plant‐level relationships indicate the potential for estimating frond area and mass at landscape scale to enrich studies of forest dynamics.  相似文献   

15.
干热河谷植物叶片,树高和种子功能性状比较   总被引:2,自引:1,他引:2       下载免费PDF全文
植物功能性状 (plant functional trait)是近年来生态学研究的热点。以云南怒江和澜沧江干热河谷36种木本植物为研究对象,选取比叶面积 (SLA)、植株高 (H) 和种子干重 (SM) 3个功能性状,研究它们的相互关系,比较其在河谷间、河谷内的差异。结果表明:1)两个河谷内36种木本植物的以上3种功能性状间没有显著的相关性 (P值分别为0.8739,0.5763,0.5517);2)河谷间的比叶面积存在显著差异 (P=0.02944),植株高和种子干重无显著差异 (P分别为0.4070, 0.8867);3)两个河谷内木本植物功能性状中,种子干重差异最大,植株高次之,比叶面积最小。  相似文献   

16.
17.
比叶面积(SLA)能够反映植物自身生长对策、对光能的捕获能力、对外界环境变化的适应和对可利用资源的分配策略,对植物的生境适应状况和群落的自然演替程度也起到重要的指示作用。为了深入了解温带森林植物SLA随空间变化的变异特征及其影响因素,跨越1200 km选取中国东北部12个典型温带森林(寒温带兴安落叶松林、温带红松针阔混交林和暖温带落叶阔叶栎林),通过对样地内物种进行系统性的调查,分析了植物SLA在空间上的变化规律及环境因素的影响效应。结果显示:中国温带森林植物SLA范围为2.02—99.65 m~2/kg(均值为34.18 m~2/kg),其中乔木SLA范围为2.02—58.74 m~2/kg(均值为21.32 m~2/kg),灌木SLA范围为2.88—99.65 m~2/kg(均值为31.60 m~2/kg),草本SLA范围为4.66—98.53 m~2/kg(均值为38.75 m~2/kg)。SLA在不同森林类型之间差异显著,具体表现为:温带红松针阔混交林>暖温带落叶阔叶栎林>寒温带兴安落叶松林。SLA受到气候因素和土壤因素的影响,其中随着年均降水、土壤碳氮含量的增加显...  相似文献   

18.
ABSTRACT

A previous study of 19 south-east Australian heath and forest species with a range of leaf textures showed that they varied considerably in leaf biomechanical properties. By using an index of sclerophylly derived from botanists' rankings (botanists' sclerophylly index, BSI) we determined that leaves considered by botanists to be sclerophyllous generally had both high strength and work to fracture (particularly in punching and tearing tests), both at the level of leaf and per unit leaf thickness. In the current study we have shown that leaves from the same species also varied considerably in leaf specific mass (46–251 g m-2), neutral detergent fibre concentration (20–59% on a dry weight basis) and in leaf anatomy. Multiple regression indicated a very strong correlation between BSI and the first two components of a principal components analysis (PCA) of leaf anatomy (R 2 = 0.91). In addition, there was strong correlation between the first component of a PCA of the mechanical properties (correlated with BSI) and the two axes derived from anatomical characteristics (R 2 = 0.66). The anatomical properties contributing most to the significant component axes were thickness of palisade mesophyll and upper cuticle (axis 1) and percentage fibre (neutral detergent fibre) and lower epidermis thickness (axis 2). However, whether these relationships are causal, or reflect correlations with characteristics not measured in this study, such as vascularization and sclerification, is not clear. At a finer scale, however, there is evidence that there are various ways to be sclerophyllous, both in terms of anatomical and mechanical properties. This is illustrated by comparison of two of the sclerophyllous species, Eucalyptus baxteri and Banksia marginata.  相似文献   

19.
It was predicted that relationships of leaf mass per area (LMA) with juvenile shade tolerance will depend on leaf habit, and on whether species are compared at a common age as young seedlings, or at a common size as saplings. A meta-analysis of 47 comparative studies (372 species) was used to test predictions, and the effect of light environment on this relationship. The LMA of evergreens was positively correlated with shade tolerance, irrespective of ontogeny or light environment. The LMA of young seedlings (相似文献   

20.
    
Abstract Cyclones cause profound immediate impacts on tropical rainforest trees, including defoliation, limb loss, snapping of stems and uprooting. Some studies have shown that plant functional traits such as tree size, buttress roots and wood density are correlated with these forms of cyclone damage. On 20 March 2006, Severe Tropical Cyclone Larry crossed the north Queensland coast and proceeded inland across the Atherton Tablelands, impacting the critically endangered Mabi Type 5b rainforest. We investigated the effects of Cyclone Larry on common tree species by categorizing damage to trees as uprooted, snapped, limbs damaged (light, moderate, severe) or upright and estimating levels of defoliation. Damage was then related to functional traits including tree size, presence of buttress roots, wood density, and leaf size and strength. Levels of damage differed between species. Tree size (diameter at breast height) and the presence of buttress roots were not related to damage levels. Wood density was significantly negatively correlated to proportion of trees with snapped stems and significantly positively correlated with the proportion of trees upright with no or light limb damage. Levels of defoliation were significantly related to leaf strength (specific leaf area – SLA) and to leaf width, but not other components of leaf size (area or length) or petiole length. Species with high wood density and low SLA (e.g. Argyrodendron spp.) were found to have high cyclone resistance, the ability to resist damage, while species with low wood density and high SLA (e.g. Dendrocnide photinophylla) exhibited low resistance. However, traits related to low resistance are also those linked to rapid growth and high cyclone resilience, the ability to recover from damage, so it is unlikely that the Mabi forest will experience long‐term changes in floristic composition following Cyclone Larry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号