首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we used data from six unlinked microsatellite loci to examine stable aggregations of Egernia stokesii, from a population in the southern Flinders Ranges of South Australia. We show that these aggregations are comprised of breeding partners, their offspring from two or more cohorts, and related adults, providing the first genetic evidence of a family structure in any lizard species. Despite this high level of relatedness within aggregations, most breeding pairs were unrelated and partners were less closely related to each other than they were to other potential within-group partners. Where individuals dispersed, both sexes usually moved to social groups close to their natal group. Although both sexes showed natal philopatry, there was some evidence that females in groups were more related than males in groups. These data suggest that an active choice of unrelated partners and male-biased dispersal may be the mechanisms used by E. stokesii to avoid inbreeding within groups.  相似文献   

2.
3.
By constraining gene flow, group living and natal philopatry can result in fine‐scale genetic structure. Although the genetic structure of some group‐living lizards has been characterised, studies are few compared with those for group‐living bird and mammal species. The Egerniinae group of lizards exhibits a high diversity of social structures, making it a useful group for comparative studies of genetic structure across a broader range of social taxa. A well‐studied member of Egerniinae is Egernia stokesii, a lizard that forms long‐term pair bonds and stable social groups and exhibits natal philopatry and limited dispersal. Evidence exists for consistent E. stokesii social structure across seven close but disconnected rocky outcrops within a 40 × 10 km area. We used summary statistics, analysis of molecular variance, Bayesian clustering, and discriminant analysis of principal components to assess if E. stokesii exhibit a consistent pattern of fine‐scale genetic structure across the same seven outcrops. Due to E. stokesii social structure and constrained dispersal, we predicted significant genetic structuring – based on microsatellite markers – among outcrops. We found significant fine‐scale genetic structuring and evidence for two genetic clusters. We discuss features of E. stokesii biology and ecology that may explain our findings. Some rocky outcrops, and some social groups, contained lizards from both genetic clusters. An examination of the composition of mixed cluster social groups did not detect any notable patterns. Therefore, further work is necessary to identify how the observed patterns may have arisen. Future investigations in E. stokesii and other group‐living lizard species are likely to contribute greatly to our understanding of the genetic consequences of group living.  相似文献   

4.
5.
Squamate reptiles are uniquely suited to study of evolution of reproductive mode and pattern of embryonic nutrition. Viviparous species have evolved from oviparous ancestors on numerous occasions, patterns of nutritional provision to embryos range widely from lecithotrophy, at one end of a continuum, to placentotrophy at the other, and structure and function of the maternal-embryonic relationship is highly constrained resulting in parallel evolutionary trajectories among taxa. Embryos of oviparous species primarily receive nourishment from yolk, but also mobilize a significant quantity of calcium from the eggshell. Most viviparous species also are predominantly lecithotrophic, yet all viviparous species are placentotrophic to some degree. Similarities in embryonic development and nutritional pattern between oviparous species and most viviparous species suggest that the pattern of nutrition of oviparous squamates is an exaptation for the evolution of viviparity and that placentotrophy and viviparity evolve concomitantly. The few species of squamates that rely substantially on placentotrophy have structural modifications of the interface between the embryo and mother that are interpreted as adaptations to enhance nutritional exchange. Recent studies have extended understanding of the diversity of embryonic nutrition and placental structure and have resulted in hypotheses for transitions in the evolution of placentotrophy, yet data are available for few species. Indirect tests of these hypotheses, by comparison of structural-functional relationships among clades in which viviparity has evolved, awaits further study of the reproductive biology of squamates.  相似文献   

6.
Evolutionary taxonomy has all but succumbed to cladistic methodology, but it continues to exert considerable influence in the realm of higher classification. Some systematists accept cladistic methods in phylogeny inference, but allow paraphyly in formal classifications. Most important, however, many traditional classifications based on paraphyletic groups (e.g. 'Reptilia') remain in force, deeply entrenched in the literature. Cladists have argued that such paraphyletic classifications can mislead comparative biologists into false evolutionary generalizations, but this assertion has rarely, if ever, been supported by example. This paper provides a case study, illustrating in detail the influence of a traditional paraphyletic classification of squamate reptiles on the historical development of ideas regarding the evolution of sensory modes (chemoreception vs. vision) in the group. The paraphyletic classification is shown to have led to false generalizations and incorrect conclusions stemming directly from the fact that the classification did not reflect accurately the phylogeny of Squamata, particularly the cladistic relationships of Gekkota. This study provides direct evidence that evolutionary generalization must be rooted in the branching pattern of phylogeny and not the potentially arbitrary categorical ranks of traditional taxonomies. It further supports recent calls for a truly phylogenctic taxonomy that has as its philosophical core the concept of descent.  相似文献   

7.
The differentiation of the dermal palate and of the septomaxilla in extant squamate reptiles is reviewed in terms of Lakjer's distinctions of a palaeochoanate, incomplete neochoanate, and neochoanate condition. The differentiation of the bones surrounding the mushroom body, Jacobson's organ, and the internal naris (choana) supports a number of clades including Squamata, Scleroglossa, and Autarchoglossa, with Serpentes nested within Autarchoglossa. Dermal palate morphology and the differentiation of the septomaxilla in squamates reflect the evolution of the chemosensory system in general, and the vomeronasal system in particular, and strongly contradict a recent hypothesis of squamate phylogeny based on molecular data.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 131–152.  相似文献   

8.
Niche conservatism has been proposed as a mechanism influencing large‐scale patterns of taxonomic richness. We document the species richness patterns of five monophyletic squamate reptile groups (gekkonids, cordylids‐scincids, lacertids, chameleons and alethinophidian snakes) in eastern and southern Africa, and explore if observed patterns reflect niche conservatism processes. We quantified richness and its relationships with current climatic conditions by gridding species' range maps at 110 × 110 km. Also, dated phylogenies and palaeoclimatic reconstructions, coupled with evidence from the fossil record, were used to approximate the areas and climate characteristics in which each group originated and/or radiated. Mean species richness and geographically corrected confidence intervals in current climate types were calculated for each group in order to establish their climatic preferences. On average, the species richness of older groups (gekkonids, cordylids‐scincids and lacertids) was lower in equatorial climates and higher in arid and temperate conditions, whereas more recent groups (chameleons and alethinophidian snakes) were richer in equatorial and temperate climates and less rich in arid conditions. Across all groups, higher richness was associated with climatic characteristics similar to those prevailing at the time in which each group originated/radiated. The congruence of the current climates where reptile groups are richer and the past climates amidst which those groups originated is consistent with an explanation for their diversity gradients based on niche conservatism.  相似文献   

9.
An important challenge in evolutionary biology is to understand how major changes in body form arise. The dramatic transition from a lizard-like to snake-like body form in squamate reptiles offers an exciting system for such research because this change is replicated dozens of times. Here, we use morphometric data for 258 species and a time-calibrated phylogeny to explore rates and patterns of body-form evolution across squamates. We also demonstrate how time-calibrated phylogenies may be used to make inferences about the time frame over which major morphological transitions occur. Using the morphometric data, we find that the transition from lizard-like to snake-like body form involves concerted evolution of limb reduction, digit loss, and body elongation. These correlations are similar across squamate clades, despite very different ecologies and >180 million years (My) of divergence. Using the time-calibrated phylogeny and ancestral reconstructions, we find that the dramatic transition between these body forms can occur in 20 My or less, but that seemingly intermediate morphologies can also persist for tens of millions of years. Finally, although loss of digits is common, we find statistically significant support for at least six examples of the re-evolution of lost digits in the forelimb and hind limb.  相似文献   

10.
The reason why some bird species live in family groups is an important question of evolutionary biology that remains unanswered. Families arise when young delay the onset of independent reproduction and remain with their parents beyond independence. Explanations for why individuals forgo independent reproduction have hitherto focused on dispersal constraints, such as the absence of high-quality breeding openings. However, while constraints successfully explain within-population dispersal decisions, they fail as an ultimate explanation for variation in family formation across species. Most family-living species are long-lived and recent life-history studies demonstrated that a delayed onset of reproduction can be adaptive in long-lived species. Hence, delayed dispersal and reproduction might be an adaptive life-history decision rather than 'the best of a bad job'. Here, we attempt to provide a predictive framework for the evolution of families by integrating life-history theory into family formation theory. We suggest that longevity favours a delayed onset of reproduction and gives parents the opportunity of a prolonged investment in offspring, an option which is not available for short-lived species. Yet, parents should only prolong their investment in offspring if this increases offspring survival and outweighs the fitness cost that parents incur, which is only possible under ecological conditions, such as a predictable access to resources. We therefore propose that both life-history and ecological factors play a role in determining the evolution of family living across species, yet we suggest different mechanisms than those proposed by previous models.  相似文献   

11.
Group living often requires strong levels of communication between individuals. This communication is usually studied in the context of visual or auditory communication. However, chemical communication is the most widely used form of communication. We examined the role of chemical communication in mediating social decisions in a group‐living lizard, Egernia stokesii. Specifically, we examined the extent to which scat‐piling, a behaviour by which individuals deposit scat in a communal area, affected the refuge choice of individual E. stokesii. To achieve this, we examined individual refuge choice in response to scat piles or single scats and against two types of scat stimuli, one being their own scat and the other being scat belonging to an unrelated and unfamiliar conspecific. We show that lizards behave differently when presented with a scat pile compared with a single scat, and whether the scat stimulus was their own or sourced from an unfamiliar conspecific. When scats were in piles, individuals spent more time inspecting, more time in, and more often chose the treatment refuge as their final refuge choice, at a trial’s end, when the treatment was their own scat compared with when the treatment was the refuge with the unfamiliar scat. In contrast, for individual scat treatments, individuals spent more time inspecting and more often ended up in the treatment refuge with an unfamiliar scat compared with when the treatment was their own scat. These results suggest that individuals are responding to information contained within multiple components of the scats – both their volume and their source. These results have implications for understanding how social aggregations are maintained within squamates, where sociality has evolved independently from other vertebrate lineages.  相似文献   

12.
Recent research has revealed unsuspected complexity in social organization among squamate reptiles. In particular, large Australian scincid lizards of the genus Egernia have been reported to occur in large aggregations of closely related individuals. However, the 'nuclear family' structure found in many other 'social' organisms (especially birds) has not been reported from reptiles. Our field studies on black rock skinks (Egernia saxatilis) in southeastern Australia document exactly this pattern. We quantified group composition using behavioural observations at regular intervals over three field seasons, and took tissue samples for parentage analysis. On the focal rock outcrop 72% of lizards were typically found as part of a stable social grouping, with individuals physically associated with other group members in a third of observations. Eighty-five per cent of juveniles lived in social groups, 65% in family groups with at least one of their parents (including 39% with both parents as revealed by parentage analysis of five microsatellite loci). Broader sampling in surrounding areas revealed similar patterns of group size, composition and relatedness. Overall, of the groups that contained more than one adult, 83% contained a single adult pair. Long-term monogamy and group stability were evident from our genetic data, with up to three annual cohorts of full-sib offspring living with their biological parents. Our data expand the range of social systems known for reptiles, and reveal strong convergence towards 'nuclear family' systems in distantly related vertebrates.  相似文献   

13.
14.
15.
Habitat heterogeneity, structural complexity and habitat quality are key features of the environment that drive species' distribution and patterns of biological organization. Traditionally, pattern‐based studies have focused on faunal responses to biological systems. However, the influence of non‐biological environments such as insular rock outcrops on patterns of vertebrate distribution is conceivably as important, but has received less attention. Granite inselbergs are a naturally heterogeneous and spatially‐limited habitat. As such, they provide an opportunity for investigating whether environmental attributes influence social behaviour in animals that use these kinds of habitat, particularly lizards that are well adapted to saxicoline environments. We applied ecological theory to investigate the influence of habitat heterogeneity, structural complexity and habitat quality on patterns of home‐site occupancy in the crevice skink Egernia striolata (Lygosominea: Scincidae) from insular granite outcrops located within fragmented agricultural landscapes. We compared home‐site occupancy among solitary juveniles, solitary adults and lizard aggregations. We found significant differences in home‐site occupancy between aggregations and solitary lizard outcrop attributes measured at multiple spatial scales. The probability of a home‐site being occupied by an aggregation increased where large rock masses were present, on northern aspects near the core of the outcrop and in structurally variegated landscapes. Significantly more aggregations occupied home‐sites surrounded by high boulder cover and crevice microhabitat. We provide evidence that geophysical attributes of granite inselbergs and landscape context can influence patterns of lizard aggregation. Thus, we clearly document the environmental correlations of variability in sociality among subpopulations of Egernia striolata.  相似文献   

16.
17.
In group living species, individuals may gain the indirect fitness benefits characterizing kin selection when groups contain close relatives. However, tests of kin selection have primarily focused on cooperatively breeding and eusocial species, whereas its importance in other forms of group living remains to be fully understood. Lekking is a form of grouping where males display on small aggregated territories, which females then visit to mate. As females prefer larger aggregations, territorial males might gain indirect fitness benefits if their presence increases the fitness of close relatives. Previous studies have tested specific predictions of kin selection models using measures such as group‐level relatedness. However, a full understanding of the contribution of kin selection in the evolution of group living requires estimating individuals' indirect fitness benefits across multiple sites and years. Using behavioural and genetic data from the black grouse (Tetrao tetrix), we show that the indirect fitness benefits of group membership were very small because newcomers joined leks containing few close relatives who had limited mating success. Males' indirect fitness benefits were higher in yearlings during increasing population density but marginally changed the variation in male mating success. Kin selection acting through increasing group size is therefore unlikely to contribute substantially to the evolution and maintenance of lekking in this black grouse population.  相似文献   

18.
Many factors, both environmental and biotic, have been suggested to facilitate or hinder the evolution of viviparity (live-bearing) in reptiles. Viviparity has evolved recently within the Australian scincid lizard Lerista bougainvillii and the species includes oviparous, viviparous, and reproductively intermediate (with prolonged egg retention) populations; thus, it offers an exceptional opportunity to evaluate the validity of these hypotheses. We carried out such tests by (i) comparing environmental conditions over the geographic ranges occupied by oviparous, viviparous, and intermediate populations (to identify possible selective forces for the evolution of viviparity), and (ii) comparing morphological, reproductive and ecological traits of L. bougainvillii with those of other sympatric scincid species (to identify traits that may have predisposed this taxon to the evolution of viviparity). The areas occupied by viviparous L. bougainvillii are significantly colder than those occupied by both their intermediate and oviparous conspecifics, in accord with the “cold-climate” hypothesis for reptilian viviparity. Rainfall is similar over the ranges of the three forms. Climatic unpredictability (as assessed by the magnitude of year-to-year thermal variation) is lower for viviparous animals, in contradiction to published speculations. Comparison with 31 sympatric scincid species showed that L. bougainvillii is not atypical for most of the traits we measured (e.g., body size, clutch size, thermal preferenda and tolerances). However, oviparous L. bougainvillii do display several traits that have been suggested to facilitate the evolution of viviparity. For example, pregnancy does not reduce locomotor ability of females; the lizards are semi-fossorial; even the oviparous females produce only a single clutch of eggs per year; and they ovulate relatively late in summer, so that the time available for incubation is limited.  相似文献   

19.
The primary pattern of embryonic nutrition for squamate reptiles is lecithotrophy; with few exceptions, all squamate embryos mobilize nutrients from yolk. The evolution of viviparity presents an opportunity for an additional source of embryonic nutrition through delivery of uterine secretions, or placentotrophy. This pattern of embryonic nutrition is thought to evolve through placental supplementation of lecithotrophy, followed by increasing dependence on placentotrophy. This review analyzes the relationship between reproductive mode and pattern of embryonic nutrition in three lecithotrophic viviparous species, and oviparous counterparts, for concordance with a current model for the evolution of viviparity and placentation. The assumptions of the model, that nutrients for oviparous embryos are mobilized from yolk, and that this source is not disrupted in the transition to viviparity, are supported for most nutrients. In contrast, calcium, an essential nutrient for embryonic development, is mobilized from both yolk and eggshell by oviparous embryos and reduction of eggshell calcium is correlated with viviparity. If embryonic fitness is compromised by disruption of a primary source of calcium, selection may not favor evolution of viviparity, yet viviparity has arisen independently in numerous squamate lineages. Studies of fetal nutrition in reproductively bimodal species suggest a resolution to this paradox. If uterine calcium secretion occurs during prolonged intrauterine egg retention, calcium placentotrophy evolves prior to viviparity as a replacement for eggshell calcium and embryonic nutrition will not be compromised. This hypothesis is integrated into the current model for evolution of viviparity and placentation to address the unique attributes of calcium nutrition. The sequence of events requires a shift in timing of uterine calcium secretion and the embryonic mechanism of calcium retrieval to be responsive to calcium availability. Regulation of uterine calcium secretion and the mechanism of embryonic uptake of calcium are important elements to understanding evolution of viviparity and placentation. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Aim To test predictions of the vicariance model, to define basic biogeographical units for Cerrado squamates, and to discuss previous biogeographical hypotheses. Location Cerrado; South American savannas south of the Amazon, extending across central Brazil, with marginal areas in Bolivia and Paraguay and isolated relictual enclaves in adjacent regions. Methods We compiled species occurrence records via field sampling and revision of museum specimens and taxonomic literature. All species were mapped according to georeferenced locality records, and classified as (1) endemic or non‐endemic, (2) typical of plateaus or depressions, and (3) typical of open or forested habitats. We tested predictions of the vicariance model using biotic element analysis, searching for non‐random clusters of species ranges. Spatial congruence of biotic elements was compared with putative areas of endemism revealed by sympatric restricted‐range species. Effects of topographical and vegetational mosaics on distribution patterns were studied according to species composition in biotic elements and areas of endemism. Results We recorded 267 Cerrado squamates, of which 103 (39%) are endemics, including 20 amphisbaenians (61% endemism), 32 lizards (42%) and 51 snakes (32%). Distribution patterns corroborated predictions of the vicariance model, revealing groups of species with significantly clustered ranges. An analysis of endemic species recovered seven biotic elements, corroborating results including non‐endemics. Sympatric restricted‐range taxa delimited 10 putative areas of endemism, largely coincident with core areas of biotic elements detected with endemic taxa. Distribution patterns were associated with major topographical and vegetational divisions of the Cerrado. Endemism prevailed in open, elevated plateaus, whereas faunal interchange, mostly associated with forest habitats, was more common in peripheral depressions. Main conclusions Our results indicate that vicariant speciation has strongly shaped Cerrado squamate diversity, in contrast to earlier studies emphasizing faunal interchange and low endemism in the Cerrado vertebrate fauna. Levels of squamate endemism are higher than in any other Cerrado vertebrate group. The high number of recovered endemics revealed previously undetected areas of evolutionary relevance, indicating that biogeographical patterns in the Cerrado were poorly represented in previous analyses. Although still largely undocumented, effects of vicariant speciation may be prevalent in a large fraction of Cerrado and Neotropical biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号