首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment‐driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant‐common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense‐related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth‐related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low‐elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature‐driven growth response maximization.  相似文献   

2.
Plants from four populations of Hordeum spontaneum originating in distinct environments of Israel were compared for stress induced phenotypic plasticity. The environments ranged along a gradient of increasing rainfall amount and predictability from low (desert) to moderate (semisteppe batha) to high (Mediterranean grassland and mountain, the latter also experiencing frost stress). The plants were exposed to a set of four treatments: no stress (optimum water and nutrients), water, nutrient and both water and nutrient stress. Plants from the four populations (or ecotypes) exhibited different patterns of plasticity in response to the different stresses (water and nutrients) and in different trait categories (reproductive, fitness and resource allocation). The importance of plasticity in response to water stress appears to decrease, and to nutrient stress appears to increase along the increasing rainfall gradient. The mountain ecotype, growing in an area with high potential productivity (amount of rainfall) but experiencing periodic frosts, was the most plastic among ecotypes in resource allocation under both water and nutrient stress, but exhibited low plasticity in other trait categories. In contrast, the desert ecotype had low plasticity in resource allocation under water stress and the lowest plasticity among the four ecotypes in all trait categories in response to nutrient stress. The ecotype originating in Mediterranean grassland, a predictable and most favourable environment, was highly plastic in fitness and allocation traits in response to low nutrient levels which is likely to occur due to competition in productive environment. We discuss the observed differences in ecotype plasticity as part of their environmentally induced adaptive ‘strategies’. We found no support for the hypothesis that plants originating in environments with greater variation and unpredictability are more plastic. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 2002, 75 , 301–312.  相似文献   

3.
Patterns of genetic and morphometric differentiation were surveyed in Melitaea (Mellicta) athalia populations of the Carpathian Basin. This species has a wide distribution and exists under a wide variety of ecological conditions. It has two ecotypes in Hungary: with either one or two broods per year. It is of particular interest to reveal the main factors driving differentiation patterns in this species. Samples in our study were obtained from five Hungarian and one Transylvanian (Romanian) regions. Enzyme polymorphism, wing characters and male external genitalia were analysed using traditional morphometric methods. Statistical methods were optimized to compare morphological and genetic data. The results of genetic surveys revealed a clear regional pattern of differentiation in M. athalia. Moreover, the results of principal component analysis, Bayesian clustering and the dendrogram all suggested that the regions can be classified into two groups corresponding to the East or West zones of the Carpathian Basin. In contrast, differentiation between the two ecotypes was less expressed in the genetic variation of M. athalia. Results of the analyses conducted on phenotypic variation also suggested a regional pattern for both sets of morphometric characters (wings and external genitalia). At the same time, neither East–West regional division nor ecotype differentiation was detected in the morphometric studies. In sum, our analyses confirmed that both genetic and phenotypic variations of M. athalia exhibit a regional pattern rather than the differentiation between the two ecotypes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

4.
J. B. McGraw 《Oecologia》1987,73(3):465-468
Summary Growth, survival and reproduction of adult plants from three reciprocally-transplanted populations of Dryas octopetala were followed over a seven year period, from 1979 to 1986. The two most different ecotypes, from snowbed and fellfield environments, were strongly selected against in extreme foreign environments via differential growth, survival, and reproduction. The more phenotypically-plastic ecotype from the snowbed experienced rapid, early mortality on the fellfield, prior to morphological adjustment, but no mortality in the last five years of the experiment. The less plastic fellfield ecotype showed no mortality for the first three years followed by a steady decline in numbers for the next four years. The ecotypic difference in plasticity may account for the contrasting mortality patterns. A population of plants with intermediate morphology was intermediate in fitness in extreme environments, but showed no superiority in its home site, suggesting that it is not a locally-adapted population. Natural selection maintains genetic differences between snowbed and fellfield populations in the face of gene flow. However, based on the response of intermediates, there appear to be limits to the degree to which selection can fine-tune adaptation along environmental gradients.  相似文献   

5.
Understanding the emergence of species through the process of ecological speciation is a central question in evolutionary biology which also has implications for conservation and management. Lake trout (Salvelinus namaycush) is renowned for the occurrence of different ecotypes linked to resource and habitat use throughout North America. We aimed to unravel the fine genetic structure of the four lake trout ecotypes in Lake Superior. A total of 486 individuals from four sites were genotyped at 6822 filtered SNPs using RADseq technology. Our results revealed different extent of morphological and genetic differentiation within the different sites. Overall, genetic differentiation was weak but significant and was on average three times higher between sites (mean FST = 0.016) than between ecotypes within sites (mean FST = 0.005) indicating higher level of gene flow or a more recent shared ancestor between ecotypes within each site than between populations of the same ecotype. Evidence of divergent selection was also found between ecotypes and/or in association with morphological variation. Outlier loci found in genes related to lipid metabolism and visual acuity were of particular interest in this context of ecotypic divergence. However, we did not find clear indication of parallelism at the genomic level, despite the presence of phenotypic parallelism among some ecotypes from different sampling sites. Overall, the occurrence of different levels of both genomic and phenotypic differentiation between ecotypes within each site with several differentiated loci linked to relevant biological functions supports the presence of a continuum of divergence in lake trout.  相似文献   

6.
Deceit‐pollinated orchid species show substantial variation in floral traits, which may be maintained by genetic drift or various forms of selection, or may reflect phenotypic plasticity. We explored how much plasticity occurs in both vegetative and floral traits of Tolumnia variegata (Oncidiinae, Orchidaceae) across two different light environments in Puerto Rico using data from a reciprocal transplant experiment. We also examined how fruit set, a measure of reproductive success and a surrogate for fitness, is associated with this morphological variation, and whether it changes over time. Tolumnia variegata responded to environmental variables in multiple ways. Vegetative characters were more plastic than those associated with sexual reproduction. Transplant effects accounted for significant variation in flower length, lip length, number of inflorescences, peduncle length, leaf length and the total number of ramets, but responses were not always consistent among years. Phenotypic selection on morphological characters was dependent on plant location. The trends detected were complex, and often inconsistent across years, probably as a result of wetter and drier years than average. Overall fruit set was quite variable among plants, averaging 15%, with no significant differences among sun and shade plants. Although reproductive success was similar among sites, habitat heterogeneity and annual variation had an effect on morphological expression, which sometimes modified the trajectories of phenotypic selection. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 431–446.  相似文献   

7.
The genetic and morphological differentiation of insect populations in relation to the use of different host plants is an important phenomenon that predates ecological specialisation and speciation in sympatric conditions. In this study, we describe the morphological variation of populations of Brevicoryne brassicae (Homoptera: Aphididae) associated with two host species, Brassica oleracea and Brassica campestris, which occur sympatrically in the highlands of Chiapas, Mexico. The study is aimed at obtaining evidence regarding phenotypic differentiation induced by, or associated with, the use of distinct but closely related host species. Seven morphological characters were measured in 696 wingless aphids collected from plants of the two host species at four localities. Morphological variation was summarised through principal components analysis (PCA). Sixty-two percent of morphological variation was explained by the first two PCs. The first component (PC1) was related to the general size of appendages, and PC2 was interpreted as the relationship between body size (body and leg size) and antenna length. Aphids growing on B. campestris were bigger than those collected from B. oleraceae. Significant differences between hosts were detected for PC1, whereas a significant effect of locality, host, and the interaction locality × host was detected for PC2. These results indicate that the average phenotype of B. brassicae individuals inhabiting different host-plant species differs as a consequence of the contrasting feeding environments the host species provide.  相似文献   

8.
The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full‐sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.  相似文献   

9.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

10.
We evaluated hypotheses of intralacustrine diversification and plastic responses to two diet environments in Icelandic Arctic charr (Salvelinus alpinus). Full‐sib families of progeny of wild polymorphic charr from two lakes where morphs vary in their degree of phenotypic and ecological divergence were split, with half of the offspring reared on a benthic and half on a limnetic type of diet to estimate family norms of reaction. We focused on variation in craniofacial traits because they are probably functionally related to diet and complement a previous study of body shape in these charr. A hierarchical analysis of phenotypic variation between lakes, pairs of morphs within each lake, and two families within each morph found that phenotypic variation partitioned between families relative to morphs was reduced in the more ecologically diversified population, which is consistent with adaptive diversification. The effect size of plastic responses between lake populations was similar, suggesting little difference in the degree of canalization in contrast to a previous analysis of body form plasticity. Thus, the role that plastic morphological responses play in the adaptive diversification of morphs and different lake populations of Arctic charr may depend on the trait. © 2013 The Linnean Society of London  相似文献   

11.
Morphometric differentiation among freshwater fish populations is a commonplace occurrence, although the underlying causes for this divergence often remain elusive. We analysed the degree and patterns of morphological differentiation among nine freshwater three‐spined stickleback (Gasterosteus aculeatus) populations inhabiting isolated karst rivers of the Adriatic Sea basin, to characterise the phenotypic diversity and differentiation in these populations. The analyses revealed marked and significant morphometric differentiation – especially in traits related to predator defence amongst most populations – even among those located within close geographic proximity in the same catchment system. Accordingly, the degree of morphometric and neutral genetic differentiation, as assessed from variability in 15 microsatellite loci from a parallel study, were uncorrelated across the populations. However, PST/FST comparisons revealed that the degree of phenotypic differentiation (PST) among populations exceeded that to be expected from genetic drift alone, suggesting a possible adaptive basis for the observed differentiation. In fact, avian predation pressure and several physiochemical environmental variables were identified as the main putative drivers of the observed differentiation, particularly in the dorsal spines, ascending process and lateral plates. Hence, the high degree of morphometric differentiation among Adriatic three‐spined stickleback populations appears to reflect adaptation to local ecological conditions. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 219–240.  相似文献   

12.
Genetic adaptation and phenotypic plasticity are two ways in which organisms can adapt to local environmental conditions. We examined genetic and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen; normoxic) populations of an African cichlid fish, Pseudocrenilabrus multicolor victoriae. Larger gills and smaller brains should be advantageous when oxygen is low, and we hypothesized that the relative contribution of local genetic adaptation vs. phenotypic plasticity should be related to potential for dispersal between environments (because of gene flow’s constraint on local genetic adaptation). We conducted a laboratory‐rearing experiment, with broods from multiple populations raised under high‐oxygen and low‐oxygen conditions. We found that most of the variation in gill size was because of plasticity. However, both plastic and genetic effects on brain mass were detected, as were genetic effects on brain mass plasticity. F1 offspring from populations with the highest potential for dispersal between environments had characteristically smaller and more plastic brains. This phenotypic pattern might be adaptive in the face of gene flow, if smaller brains and increased plasticity confer higher average fitness across environment types.  相似文献   

13.
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life‐history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.  相似文献   

14.
Natural populations of widely‐distributed animals often exhibit clinal variation in phenotypic traits or in allele frequencies of a particular gene over their geographical range. A planktotrophic intertidal snail, Littorina keenae is broadly distributed along the north‐eastern Pacific coast through a large latitudinal range (24°50′N–43°18′N). We tested for latitudinal clines in two complex phenotypic traits – thermal tolerance and body size – and one single locus trait – heat shock cognate 70 (HSC70) – in L. keenae along almost its entire geographical range. We found only weak evidence for a latitudinal cline in the thermal tolerance and no evidence for a cline in allele frequencies at HSC70. However, as predicted by Bergmann's rule, we detected a strong latitudinal cline that accounted for 60% of the variance in body size (R2 = 0.598; P < 0.001). In contrast, body size did not significantly affect thermal tolerance. HSC70 showed no genetic differentiation among the populations, supporting our previous mitochondrial gene‐based estimate of high gene flow during this snail's free‐swimming larval stage. Given that L. keenae experiences panmixia along its species range, the observed size cline may be partially or entirely caused by a phenotypically plastic response to local thermal environments rather than by genetic divergence in body size among populations in response to locally optimizing natural selection. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 494–505.  相似文献   

15.
Light intensity and heterogeneity are some of the main environmental factors that differ between forest and savanna habitats, and plant species from these habitats form distinct functional types. In this study, we tested the hypothesis that not only differences in morphological and physiological traits but also phenotypic plasticity in response to light are involved in adaptation to forest and savanna habitats by investigating ecotypic differentiation between populations of Plathymenia reticulata (Leguminosae: Mimosoideae), a tree from the Brazilian Atlantic Forest and the Brazilian Cerrado (savanna). Seeds from four natural populations (one from each biome core area and two from ecotonal regions) were grown in a common garden with four light treatments. Fifteen morphological and physiological characteristics were evaluated until individuals reached 6 mo old. Comparisons among populations showed differences for seven traits in at least one light treatment. These differences pointed to local adaptation to different biomes. Populations showed different levels of phenotypic plasticity in response to light in seven traits. Higher plasticity was found either in the forest core population or ecotonal populations; lower values were found in the cerrado core population. Lower plasticity in the cerrado population emphasizes the stress resistant syndrome, as lower plasticity is probably advantageous in a habitat where a conservative resource use is crucial. Higher plasticity in forest individuals suggests higher ability in exploiting the light heterogeneity in this habitat. Also, higher plasticity in ecotonal populations can be important to ensure the maintenance of P. reticulata in these temporally and spatially dynamic areas. Abstract in Portugese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

16.
Variation patterns in phenotypic plasticity and broad sense heritability of 26 characters were examined within and among closely adjacent habitats of the bearded iris,Iris pumila. It was found thatI. pumila has considerable differentiation for phenotypic plasticity and genetic variation over short distances. An analysis of relationships between character differentiation and phenotypic plasticity suggests that they could have evolved independently. Possible mechanisms for maintaining local differentiation of the observed plastic and genetic variation are also discussed.  相似文献   

17.
Phenotypic plasticity allows organisms to cope with environmental variation and may aid in the evolution of novel traits. However, whether phenotypic plasticity is beneficial, or if acclimation responses might be constrained to particular ecotypes is generally poorly explored. Here we test the beneficial acclimation hypothesis (BAH) and its alternatives for desiccation resistance to atmospheric moisture in mesic‐ and xeric‐adapted Glossina species. Highly significant interactions among acclimation and test humidity were detected for water loss rates indicative of significant phenotypic plasticity. Ordered‐factor anova was unable to reject predictions of the ‘drier is better’ acclimation hypothesis in xeric Glossina morsitans and mesic G. austeni. Evidence for the ‘deleterious acclimation hypothesis’ was found for mesic G. palpalis as expected from the moist habitats it typically occupies. By contrast, support for the ‘optimal acclimation hypothesis’ was found in xeric G. pallidipes. Little support for BAH was obtained in the present study, although other hypotheses, which might enhance fitness within the environments these species are typically exposed to, were supported. However, acclimation responses were not necessarily constrained to xeric/mesic ecotypes which might be expected if adaptation to a particular environment arose as a trade‐off between plastic responses and living in a particular habitat. These results highlight the complexity of acclimation responses and suggest an important role for phenotypic plasticity in moderating environmental effects on evolutionary fitness in Glossina.  相似文献   

18.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

19.
A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long‐lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among‐population differentiation for adaptive traits and their remarkable capacity to cope with dry and low‐fertility environments. We studied 52 range‐wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive–vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade‐offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size‐corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species.  相似文献   

20.
Phenotypic plasticity is essential for plant adaptation to changing environments but some factors limit its expression, causing plants to fail in producing the best phenotype for a given environment. Phenotypic integration refers to the pattern and magnitude of character correlations and it might play a role as an internal constraint to phenotypic plasticity. We tested the hypothesis that phenotypic integration – estimated as the number of significant phenotypic correlations between traits – constrains phenotypic plasticity of plants. The rationale is that, for any phenotypic trait, the more linked with other traits it is, the more limited is its range of variation. In the perennial species Convolvulus chilensis (Convolvulaceae) and Lippia alba (Verbenaceae) we determined the relationship between phenotypic plasticity to relevant environmental factors – shading for C. chilensis and drought for L. alba– and the magnitude of phenotypic integration of morphological and biomass allocation traits. In C. chilensis plants, plasticity to shading of a given trait decreased with the number of significant correlations that it had with the other traits. Likewise, the characters that showed greater plasticity to experimental drought in L. alba plants had fewer significant phenotypic correlations with other characters. We report a novel limit to phenotypic plasticity of plants by showing that the phenotypic trait architecture may constrain their plastic, functional responses to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号