首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: What is the influence of remnant trees on secondary forest structure and composition in tropical pastures many years after abandonment? Location: Neotropical lowland wet forest, La Selva Biological Station, Costa Rica. Methods: Tree and sapling density, basal area, and species richness were quantified at three distances from remnant trees, 0–10 m (inner), 20–30 m (intermediate), and ca. 50 m (distal) zones. A total of 15 remnant trees were sampled in pastures ~23 years after abandonment. Results: Tree density decreased along a gradient from inner (1117 ± 377 individuals/ha) to distal (592 ± 282 individuals/ha) zones, and the number of large‐seeded individuals (seeds > 1 cm diameter) was significantly greater in the inner zone. Basal area of tree individuals was greater in the inner (25.6 ± 12 m2/ha) and intermediate (28.3 ± 15.6 m2/ha) zones than the distal zone (14.7 ± 7.2 m2/ha), but there were no differences between inner and intermediate zones. Similar patterns are reported for species richness. Additionally, saplings (1 ‐ 5 cm DBH) had higher density directly beneath and adjacent to remnants, suggesting that remnant trees can affect recruitment even many years after pasture abandonment and the formation of a surrounding secondary forest. Conclusions: Results indicate that remnant trees facilitate forest recovery over a broad temporal range, and appear to ‘nucleate’ forest regeneration by expanding their sphere of influence outward over time.  相似文献   

2.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

3.
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

4.
Abstract. Large isolated trees are a common feature of the agricultural landscape in humid tropical regions originally covered by rain forest. These isolated trees are primarily used as a source of shade for cattle and people. 13 pastures (totalling ca. 80 ha) currently used as cattle pasture were studied. In them, we registered 265 isolated trees belonging to 57 species. 50 trees of the most frequent species (Ficus spp. n = 30 and Nectandra ambigens n = 20) were selected to examine the influence of isolated trees on floristic composition and vegetation structure in the pastures. At each tree, three 4–m2 quadrats were sampled: under the canopy, directly under the canopy perimeter, and beyond the canopy in the open pasture. Under-canopy vegetation was structurally and floristically different from the other two sampling sites. Mean species richness per quadrat was significantly higher under the canopy (17.8 ± 4.3 SD) than at the canopy perimeter (11.2 ± 3.4) and in the open pasture (10.6 ± 3.6) sites. Stem density was higher at under-canopy sites, where greater proportions of endozoochorous and rain-forest species were found. Isolated trees function as nursery plants for rain-forest species by facilitating the establishment of zoochorous species whose seeds are deposited under the tree canopies by frugivorous birds or bats. Our results imply that isolated trees may play a major role in seed dispersal and establishment of native species, which is of consequence for the preservation of rain-forest species in these fragmented landscapes.  相似文献   

5.
Pollen flow and dispersal patterns were investigated in a small, isolated forest fragment of the Neotropical insect pollinated tree Copaifera langsdorffii, using paternity analysis and eight microsatellite loci. We also investigated the coancestry and effective population size of progeny arrays for conservation and environmental restoration purposes. Open-pollinated seeds were collected from 15 seed trees within the forest fragment, in which all adult trees were mapped, measured and genotyped. Twenty seeds were also collected from the nearest neighbor tree located 1.2 km from the forest fragment. Our results show that levels of genetic diversity were significantly higher in adults than offspring and significant levels of inbreeding were detected in offspring (F = 0.226). From paternity analysis, we observed low levels of selfing (s = 8%) and pollen immigration (m = 8%) in the fragment, but very high levels were detected for the isolated tree (s = 20%; m = 75%), indicating that the population and the tree are not reproductively isolated and are connected by patterns of long distance pollen dispersal (maximum detected 1,420 m). Within the forest fragment, the pattern of pollen dispersal was a near neighbor pattern with 49% of the pollen being dispersed within 50 m. The effective population size of the progeny array was low, indicating the need to collect seeds from a large number of seed trees (at least 76) for conservation purposes. The results show that the spatial isolation of the population and isolated tree due to forest fragmentation has not disrupted genetic connectivity; however, spatial isolation does seem to increase selfing and correlated mating.  相似文献   

6.
Appropriate fire management strategies are needed to protect forests and large old ecologically and culturally significant trees in natural landscapes. The aim of this study was to determine the age of large old and relic trees of cultural significance that included Cypress Pine (Callitris columellaris F. Muell.), a species that is sensitive to crown scorching fires in a fire‐prone landscape, and to calibrate a tree‐growth‐rate method for estimating tree age. Twelve large trees were dated using radiocarbon (14C) dating. The trees are located on North Stradbroke Island (Indigenous name: Minjerribah), southeast Queensland (Australia) in a fire‐prone landscape where recent wildfires have destroyed many large trees. The median tree ages ranged from 155 to 369 years. These results suggest an important role of past Indigenous land management practices in protecting Cypress Pine from crown scorching fires. The tree‐growth‐rate‐based method for estimating tree age generally overestimated the age derived from radiocarbon dating. Bias correction factors were developed for correcting various measures of periodic growth rates. This study provides evidence that appropriate low‐intensity fire strategies have the potential to contribute to the survival of forests and conserve large old trees.  相似文献   

7.
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities.  相似文献   

8.
Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation—including low seed arrival, availability and persistence—are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken‐dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken‐dominated areas and the neighboring forest. These processes were assessed along ten 50‐m transects crossing the forest–bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m?2 year?1), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m2), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3‐day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis: Recruitment limitation contributes to both the slow recovery of forest in bracken‐dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.  相似文献   

9.
The role of the Orii’s flying-fox (Pteropus dasymallus inopinatus) as a pollinator and a seed disperser on Okinawa-jima Island was investigated by direct observations and radio-tracking from October 2001 until January 2006. We found that Orii’s flying-fox potentially pollinated seven native plant species. Its feeding behavior and plant morphological traits suggested that this species is an important pollinator of Schima wallichii liukiuensis and Mucuna macrocarpa. The flying-fox also dispersed the seeds of 20 native plant species. The seeds of all plants eaten by the flying-fox were usually dropped beneath the parent tree, although large fruits of four plant species were occasionally brought to the feeding roosts in the mouth, with the maximum dispersal distance—for Terminalia catappa—estimated to be 126 m. Small seeds of 11 species (mostly Ficus species) were dispersed around other trees, during the subsequent feeding session, through the digestive tracts, with the mean dispersal distance for ingested seeds estimated at 150 ± 230.3 m (±SD); the maximum dispersal distance was 1833 m. A comparison of the seed dispersal of available fruits according to the size of flying-foxes and other frugivores suggested that the seed dispersal of eight plant species producing large fruits mostly depended on Orii’s flying-fox. On Okinawa-jima Island, the Orii’s flying-fox plays an important role as a pollinator of two native plants and as a long-distance seed disperser of Ficus species, and it functions as a limited agent of seed dispersal for plants producing large fruits on Okinawa-jima Island.  相似文献   

10.
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7‐ to 8‐year‐old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50‐m plots in four former pasture sites in southern Costa Rica: plantation – trees planted throughout the plot; applied nucleation/islands – trees planted in patches of different sizes; and natural regeneration – no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource‐intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.  相似文献   

11.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

12.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Abstract In unpolluted regions, where inorganic nitrogen (N) inputs from the atmosphere are minimal, such as remote locations in southern South America, litterfall dynamics and N use efficiency of tree species should be coupled to the internal N cycle of forest ecosystems. This hypothesis was examined in two evergreen temperate forests in southern Chile (42°30′S), a mixed broad‐leaved forest (MBF) and a conifer forest (CF). Although these forests grow under the same climate and on the same parental material, they differ greatly in floristic structure and canopy dynamics (slower in the CF). In both forests, biomass, N flux, and C/N ratios of fine litterfall were measured monthly from May 1995 to March 1999. There was a continuous litter flux over the annual cycle in both forests, with a peak during autumn in the CF. In the MBF, litterfall decreased during spring. In both forests, the C/N ratios of litterfall varied over the annual cycle with a maximum in autumn. Annual litterfall biomass flux (Mean ± SD = 3.3 ± 0.5 vs 2.0 ± 0.5 Mg ha?1) and N return (34.8 ± 16 vs 9.1 ± 2.8 kg N ha?1) were higher in the MBF than in the CF. At the ecosystem level, litterfall C/N was lower in the MBF (mean C/N ratio = 60.1 ± 15, n = 3 years) suggesting decreased N use efficiency compared with CF (mean C/N ratio = 103 ± 19.6, n = 3 years). At the species level, subordinated (subcanopy) tree species in the MBF had significantly lower C/N ratios (<50) of litterfall than the dominant trees in the CF and MBF (>85). The litterfall C/N ratio and percentage N retranslocated were significantly correlated and were lower in the MBF. The higher net N mineralization in soils of the MBF is related to a lower N use efficiency at the ecosystem and species level.  相似文献   

14.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

15.
Fig (Ficus spp.) trees have been promoted as framework species for tropical forest restoration throughout Asia, because they are considered to be keystone species. This article presents optimal propagation and planting techniques for six Asian dioecious Ficus species, which will enable their inclusion in forest restoration plantings across the Asia‐Pacific region: Ficus auriculata, F. fulva, F. hispida, F. oligodon, F. semicordata, and F. variegata. Nursery experiments compared the growth performance of propagating planting stock from seed and from leafy cuttings, whereas field experiments assessed the cost‐effectiveness and the relative performance of (1) direct seeding, (2) planting stock from seed, and (3) planting stock from cuttings. The most efficient method of producing Ficus spp. was from seed. Propagation from cuttings was much less successful. Seedlings produced from seed had the highest rates of growth and survival both in the nursery and in field trials. In field trials, use of planting stock from seed was also more cost‐effective than direct seeding and vegetative propagation. Establishment costs calculated on the basis of “per plant established” were $1.14 for seed, $6.95 for cutting, and $25.88 for direct seeding.  相似文献   

16.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

17.
Tropical trees are generally long-lived making it difficult to assess the long-term effects of habitat fragmentation on genetic diversity. Maintenance of genetic diversity in fragmented landscapes is largely dependent on the species’ mating system and the degree of genetic connectivity (seed and pollen flow) among fragments. Currently, these parameters are largely unknown for many endangered tropical tree species. Additionally, landscape fragmentation may isolate tropical tree populations from larger, more continuous populations. The role of isolated individuals in pollen transfer within and between remnant populations is not clear. In this study, we estimate the mating system and pollen flow patterns in continuous and remnant populations of the endangered tropical tree Guaiacum sanctum (Zygophyllaceae). Fractional paternity analyses were used to estimate average gene flow distances between fragmented remnant populations and the siring success of an intermediately located, but isolated individual. In these populations, G. sanctum is a mixed-mating species (t m = 0.72 − 0.95) whose pollen is transported over large distances (>4 km). An isolated tree may have functioned as a stepping-stone between two clusters of individuals, assisting long-distance pollen movement. This individual also sired a disproportionately high number of seeds (13.9%), and is thus an important component of the reproductive success of these populations, thus rejecting Janzen’s “living-dead” hypothesis. The high levels of genetic diversity maintained as a consequence of long-distance pollen-flow suggest that this endangered species may have the potential for future adaptation and population expansion if suitable habitats become available.  相似文献   

18.
Question: Will a non‐indigenous, invasive, understorey shrub, such as Lonicera maackii (Amur honeysuckle) have an impact on the productivity of overstorey trees in hardwood forests? Location: Trees from 12 invaded and four non‐invaded sites were sampled in hardwood forests of southwestern Ohio, US. Methods: Changes in radial and basal area tree growth in the ten years prior to L. maackii invasion vs. ten years after invasion were examined using dendrochronological techniques. Intervention analysis was used to detect growth changes 25 years prior to and 25 years following invasion, and estimates of load impacts for L. maackii population and biomass were also calculated. Results: We found that the rate of radial and basal area growth of overstorey trees was reduced significantly in eleven out of twelve invaded sites. Non‐invaded sites did not exhibit this consistent pattern of reduced growth. For invaded vs. non‐invaded sites, the mean basal area growth was reduced by 15.8%, and the overall rate of basal area growth was reduced by 53.1%. Intervention analysis revealed that the first significant growth reductions were 6.25 ± 1.24 (mean ± SE) years after invasion with the greatest frequency of negative growth changes occurring 20 years after invasion. In invaded stands, 41% of trees experienced negative growth changes. In terms of invasive load estimates per 1000 L. maackii individuals, radial tree growth was reduced by 0.56 mm.a?1, and basal area growth was reduced by 0.74 cm2.a?1, Given these findings, significant economic losses could occur in hardwood forests of Ohio. Conclusions: To our knowledge, this is the first study using dendrochronological techniques to investigate the impact of a non‐indigenous, understorey plant on overstorey tree growth. Active management will likely be needed to maintain forest productivity in L. maackii impacted landscapes.  相似文献   

19.
Wood density (WD) is not only an important parameter to estimate aboveground biomass but also an indicator of timber quality and plant adaptation strategies to stressful conditions (i.e., windthrow, pests, and pathogens). This study had three objectives: (1) to compare WD among seven subtropical tree species; (2) to determine how tree growth traits may influence possible differences in WD between the pioneer and shade‐tolerant species; and (3) to examine whether or not WD differs by tree social status (dominant vs. suppressed trees) within species. To do this, 70 trees were destructively harvested. From each tree, disks at different stem heights were obtained and subjected to a method of stem analysis to measure whole tree level WD. The results showed that WD differed significantly among the seven species (< .001). Their average WD was 0.537 g/cm3, ranging from 0.409 g/cm3 for Choerospondias axillaris to 0.691 g/cm3 for Cyclobalanopsis glauca. The average WD of the four pioneer species (0.497 ± 0.13 g/cm3) was significantly lower (< .01) than that of the three shade‐tolerant species (0.589 ± 0.12 g/cm3). The WD of the pioneers had a significant positive correlation with their stem diameter at breast height (DBH), tree height (H), and tree age, but WD had a significant negative correlation with relative growth rate (RGR). In contrast, the WD of the shade‐tolerant tree species had no significant relationships with DBH, H, tree age, or RGR. The dominant trees of the pioneer species had a higher WD than the suppressed trees, whereas the shade‐tolerant species had a lower WD for dominant trees than the suppressed trees. However, the differences in WD between dominant and suppressed trees were not significant. Taken together, the results suggest that classifying species into pioneer and shade‐tolerant groups to examine the effects of tree growth traits and social status could improve our understanding of intra‐ and interspecific variation in WD among subtropical tree species.  相似文献   

20.
Efforts to improve models of terrestrial productivity and to understand the function of tropical forests in global carbon cycles require a mechanistic understanding of spatial variation in aboveground net primary productivity (ANPP) across tropical landscapes. To help derive such an understanding for Borneo, we monitored aboveground fine litterfall, woody biomass increment and ANPP (their sum) in mature forest over 29 months across a soil nutrient gradient in southwestern Kalimantan. In 30 (0.07 ha) plots stratified throughout the watershed (∼340 ha, 8–190 m a.s.l.), we measured productivity and tested its relationship with 27 soil parameters. ANPP across the study area was among the highest reported for mature lowland tropical forests. Aboveground fine litterfall ranged from 5.1 to 11.0 Mg ha−1 year−1 and averaged 7.7 ± 0.4 (mean ± 95 C.I.). Woody biomass increment ranged from 5.8 to 23.6 Mg ha−1 year−1 and averaged 12.0 ± 2.0. Growth of large trees (≥60 cm dbh) contributed 38–82% of plot-wide biomass increment and explained 92% of variation among plots. ANPP, the sum of these parameters, ranged from 11.1 to 32.3 Mg ha−1 year−1 and averaged 19.7 ± 2.2. ANPP was weakly related to fine litterfall (r 2 = 0.176), but strongly related to growth of large trees at least 60 cm dbh (r 2 = 0.848). Adjusted ANPP after accounting for apparent “mature forest bias” in our sampling method was 17.5 ± 1.2 Mg ha−1 year−1.Relating productivity measures to soil parameters showed that spatial patterning in productivity was significantly related to soil nutrients, especially phosphorus (P). Fine litterfall increased strongly with extractable P (r 2 = 0.646), but reached an asymptote at moderate P levels, whereas biomass increment (r 2 = 0.473) and ANPP (r 2 = 0.603) increased linearly across the gradient. Biomass increment of large trees was more frequently and strongly related to nutrients than small trees, suggesting size dependency of tree growth on nutrients. Multiple linear regression confirmed the leading importance of soil P, and identified Ca as a potential co-limiting factor. Our findings strongly suggest that (1) soil nutrients, especially P, limit aboveground productivity in lowland Bornean forests, and (2) these forests play an important, but changing role in carbon cycles, as canopy tree logging alters these terrestrial carbon sinks. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号