首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Activation of Ras signaling by growth factors has been associated with gene regulation and cell proliferation. Here we characterize the contributory role of cytosolic phospholipase A(2) in the oncogenic Ha-Ras(V12) signaling pathway leading to activation of c-fos serum response element (SRE) and transformation in Rat-2 fibroblasts. Using a c-fos SRE-luciferase reporter gene, we showed that the transactivation of SRE by Ha-Ras(V12) is mainly via a Rac-linked cascade, although the Raf-mitogen-activated protein kinase cascade is required for full activation. In addition, Ha-Ras(V12)-induced DNA synthesis was significantly attenuated by microinjection of recombinant Rac(N17), a dominant negative mutant of Rac1. To identify the mediators downstream of Rac in the Ha-Ras(V12) signaling, we investigated the involvement of cytosolic phospholipase A(2). Oncogenic Ha-Ras(V12)-induced SRE activation was significantly inhibited by either pretreatment with mepacrine, a phospholipase A(2) inhibitor, or cotransfection with the antisense oligonucleotide of cytosolic phospholipase A(2). We also found cytosolic phospholipase A(2) to be situated downstream of Ha-Ras(V12) in a signal pathway leading to transformation. Together, these results are indicative of mediatory roles of Rac and cytosolic phospholipase A(2) in the signaling pathway by which Ha-Ras(V12) transactivates c-fos SRE and transformation. Our findings point to cytosolic phospholipase A(2) as a novel potential target for suppressing oncogenic Ha-Ras(V12) signaling in the cell.  相似文献   

14.
In the present work, we have studied the kinetic properties of the catalytic domain of CtBP1, a co-repressor belonging to the d-2-hydroxyacid dehydrogenase family and known to reduce pyruvate in the presence of NADH. CtBP1 acted on a variety of alpha-keto acids, for which it displayed biphasic curves with inhibition at elevated concentrations, as observed with other dehydrogenases of the same family. Based on catalytic efficiencies, the best substrate was 2-keto-4-methylthiobutyrate, an intermediate of the methionine salvage pathway. It was about 20-fold better than 2-ketoisocaproate and glyoxylate, and 80-fold better than pyruvate. From these data we conclude that 2-keto-4-methylthiobutyrate may be an important regulator of CtBP activity, possibly linking gene repression to the activity of the methionine salvage and spermine synthesis pathways.  相似文献   

15.
Human adenovirus E1A makes extensive connections with the cellular protein interaction network. By doing so, E1A can manipulate many cellular programs, including cell cycle progression. Through these reprogramming events, E1A functions as a growth-promoting oncogene and has been used extensively to investigate mechanisms contributing to oncogenesis. Nevertheless, it remains unclear how the C-terminal region of E1A contributes to oncogenic transformation. Although this region is required for transformation in cooperation with E1B, it paradoxically suppresses transformation in cooperation with activated Ras. Previous analysis has suggested that the interaction of E1A with CtBP plays a pivotal role in both activities. However, some C-terminal mutants of E1A retain CtBP binding and yet exhibit defects in transformation, suggesting that other targets of this region are also necessary. To explore the roles of these additional factors, we performed an extensive mutational analysis of the C terminus of E1A. We identified key residues that are specifically required for binding all known targets of the C terminus of E1A. We further tested each mutant for the ability to both localize to the nucleus and transform primary rat cells in cooperation with E1B-55K or Ras. Interaction of E1A with importin α3/Qip1, dual-specificity tyrosine-regulated kinase 1A (DYRK1A), HAN11, and CtBP influenced transformation with E1B-55K. Interestingly, the interaction of E1A with DYRK1A and HAN11 appeared to play a role in suppression of transformation by activated Ras whereas interaction with CtBP was not necessary. This unexpected result suggests a need for revision of current models and provides new insight into transformation by the C terminus of E1A.  相似文献   

16.
17.
18.
19.
20.
F C Lucibello  C Lowag  M Neuberg  R Müller 《Cell》1989,59(6):999-1007
Fos protein can trans-activate AP-1-dependent gene expression and trans-repress the c-fos promoter. Although we find that trans-repression is enhanced by coexpression of c-Jun, it does not require any of the AP-1 or ATF sites in the mouse c-fos promoter. A major target for repression is the serum response element (SRE). Fos mutants with an impaired leucine zipper are defective in trans-repression and transformation, suggesting that these functions involve the formation of Fos protein complexes. In contrast, mutations that abolish DNA binding of Fos enhance trans-repression but destroy the transforming potential of Fos. In addition, v-Fos protein efficiently transforms but is unable to trans-repress. These findings point to different mechanisms involved in trans-activation and trans-repression and suggest that trans-repression of the type described here is neither sufficient nor required for Fos-induced transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号