首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The imprinted region on mouse distal chromosome 12 covers about 1 Mb and contains at least three paternally expressed genes (Pegs: Peg9/Dlk1, Peg11/Rtl1, and Dio3) and four maternally expressed genes (Megs: Meg3/Gtl2, antiPeg11/antiRlt1, Meg8/Rian, and Meg9/Mirg). Gtl2(lacZ) (Gene trap locus 2) mice have a transgene (TG) insertion 2.3 kb upstream from the Meg3/Gtl2 promoter and show about 40% growth retardation when the TG-inserted allele is paternally derived. Quantitative RT-PCR experiments showed that the expression levels of Pegs in this region were reduced below 50%. These results are consistent with the observed phenotype in Gtl2lacZ mice, because at least two Pegs(Peg9/Dlk1 and Dio3) have growth-promoting effects. The aberrant induction of Megs from silent paternal alleles was also observed in association with changes in the DNA methylation level of a differentially methylated region (DMR) located around Meg3/Gtl2 exon 1. Interestingly, a 60 approximately 80% reduction in all Megs was observed when the TG was maternally derived, although the pups showed no apparent growth or morphological abnormalities. Therefore, the paternal or maternal inheritance of the TG results in the down-regulation in cis of either Pegs or Megs, respectively, suggesting that the TG insertion influences the mechanism regulating the entire imprinted region.  相似文献   

2.
Genomic imprinting in mammals: emerging themes and established theories   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
Genomic imprinting is an epigenetic phenomenon that brings the difference of expression between paternally or maternally derived alleles and is specific for mammals in vertebrates. This imprint is established in the parental germlines and then inherited to the next generation to regulate expression of imprinted genes that are essential to support proper embryonic development. More than one hundred imprinted genes have been identified in mice and humans. Some are essential for embryonic development, especially placental formation, and others regulate metabolism, behavior and physiological functions. In humans, disruption of genomic imprinting causes several diseases, including cancer. Recently, the molecular mechanisms of genomic imprinting are getting clarified. How do parents regulate gene expression of their children? Why and how is genomic imprinting evolved in mammals? The review offers a handful of recent progress in this area.  相似文献   

5.
Gene expression from both parental alleles (biallelic expression) is beneficial in minimizing the occurrence of recessive genetic disorders in diploid organisms. However, imprinted genes in mammals display parent of origin-specific monoallelic expression. As some imprinted genes play essential roles in mammalian development, the reason why mammals adopted the genomic imprinting mechanism has been a mystery since its discovery. In this review, based on the recent studies on imprinted gene regulation we discuss several advantageous features of a monoallelic expression mechanism and the necessity of genomic imprinting in the current mammalian developmental system. We further speculate how the present genomic imprinting system has been established during mammalian evolution by the mechanism of complementation between paternal and maternal genomes under evolutionary pressure predicted by the genetic conflict hypothesis.  相似文献   

6.
《Epigenetics》2013,8(1):14-20
Genomic imprinting attracted particular attention in the 1980’s following the discovery that the parental origin of genetic information is essential for normal development of eutherians,1,2 for review see.3 The term imprinting was first introduced in the 1960s to describe the elimination of the paternal chromosomes during spermatogenesis in the Sciarid fly.4?6Today the term genomic imprinting mainly refers to parent?of?origin specific effects distinguishing each parental genome which can be regarded as memories, or “imprints”.7,8 Breaking the rules of Mendel, genomic imprinting is an epigenetic phenomenon per se. Epigenetics is currently defined as the study of mitotically or meiotically heritable changes in gene expression without any change in DNA sequence9,10 and it is intimately linked to the study of inheritance of chromatin states.11 Gene imprinting currently refers to differential expression of autosomal genes according to their parent of origin.12The phenomenon of genomic imprinting explains several cases of parent?specific human disorders.13 To date over 80 imprinted genes have been described in mammals14 and their parent?of?origin specific expression can correlate with changes in DNA methylation patterns, antisense noncoding RNAs and chromatin folding.3 Epigenetic imprints can either activate or silence the “imprinted” allele, and hence imprinting can be associated with either an expressed or silenced allele.15 In mammals, the number of paternally expressed imprinted genes is almost equivalent to the number of maternally expressed genes and the imprinted status can differs according to tissue, developmental stage and species. It is then crucial for our understanding to clearly indicate the status of imprinting (i.e., paternally or maternally expressed) and the context (e.g., species, developmental stage, tissue).  相似文献   

7.
Parental genomic imprinting is characterized by the expression of a selected panel of genes from one of the two parental alleles. Recent evidence shows that DNA methylation and histone modifications are responsible for this parent-of-origin-dependent expression of imprinted genes. Because similar epigenetic marks have been recruited independently in plants and mammals, the only organisms in which imprinted gene loci have been identified so far, this phenomenon represents a case for convergent evolution. Here we discuss the emerging parallels in imprinting in both taxa. We also describe the significance of imprinting for reproduction and discuss potential models for its evolution.  相似文献   

8.
Ogawa H  Wu Q  Komiyama J  Obata Y  Kono T 《FEBS letters》2006,580(22):5377-5384
In mammals, imprinted genes show parental origin-dependent expression based on epigenetic modifications called genomic imprinting (GI), which are established independently during spermatogenesis or oogenesis. Due to GI, uniparental fetuses never develop to term. To determine whether such expression of imprinted genes is maintained in uniparental mouse fetuses, we analyzed the expression of 20 paternally and 11 maternally expressed genes in androgenetic and parthenogenetic fetuses. Four genes of each type were expressed in both groups of fetuses. Furthermore, quantitative analysis showed that expression levels deviated from the presumed levels for some imprinted genes. These results suggest that mechanisms acting in trans between paternal and maternal alleles are involved in the appropriate expression of some imprinted genes.  相似文献   

9.
What are imprinted genes doing in the adult brain? Genomic imprinting is when a gene's expression depends upon parent of origin. According to the prevailing view, the “kinship theory” of genomic imprinting, this effect is driven by evolutionary conflicts between genes inherited via sperm versus egg. This theory emphasizes conflicts over the allocation of maternal resources, and focuses upon genes that are expressed in the placenta and infant brain. However, there is growing evidence that imprinted genes are also expressed in the juvenile and adult brain, after cessation of parental care. These genes have recently been suggested to underpin neurological disorders of the social brain such as psychosis and autism. Here we advance the kinship theory by developing an evolutionary model of genomic imprinting for social behavior beyond the nuclear family. We consider the role of demography and mating system, emphasizing the importance of sex differences in dispersal and variance in reproductive success. We predict that, in hominids and birds, altruism will be promoted by paternally inherited genes and egoism will be promoted by maternally inherited genes. In nonhominid mammals we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We discuss the implications for the evolution of psychotic and autistic spectrum disorders in human populations with different social structures.  相似文献   

10.
Parental genomic imprinting is an epigenetic phenomenon causing the expression of a gene from one of the two parental alleles. Imprinting has been identified in plants and mammals. Recent evidence shows that DNA methylation and histone modifications are responsible for this parent-of-origin dependent expression of imprinted genes. We review the mechanisms and functions of imprinting in plants. We further describe the significance of imprinting for reproduction and discuss potential models for its evolution.  相似文献   

11.
Genomic imprinting is an epigenetic phenomenon characterized by monoallelic expression of the genes depending on their parental origin. The molecular basis of this expression is covalent modifications of DNA and histones that are formed during maturation of germline cells. Abnormalities of the establishment of genomic imprinting during gametogenesis or its maintenance at various stages of development, caused by aberrant epigenetic modifications of the chromatin, predominantly disturbance of DNA methylation state, are a form of mutational variability of imprinted genomic loci. In this review, we consider the spectrum of epimutations of imprinted genes, present their classification, and discuss possible causes of their appearance and their role in etiology of hereditary human diseases.  相似文献   

12.
13.
哺乳动物印记基因的研究进展   总被引:1,自引:0,他引:1  
哺乳动物印记基因是指只表达亲本一方的遗传信息,而另一方处于关闭状态的一类基因。约80%的印记基因呈串出现在染色体上;在哺乳动物品种之间,印记基因具有较高的保守性;印记基因的复制通常表现为不同时性;一些印记基因具有印记遗传的时空性;少数印记基因只转录为mRNA而不翻译成蛋白质;印记基因的反意链通常表达,表达产生具有调节印记基因的作用。哺乳动物印记基因的调控序列的DNA甲基化、组蛋白乙酰酸化和组蛋白甲基化等引起其印记表达,其中DNA分子的甲基化是关键,它在生命周期中可被清除,也可被标记。印记基因之间的调控表达通常是相互作用的。克隆动物作为印记基因研究的实验动物模型,已获得许多有意义的研究结果。  相似文献   

14.
Genomic imprinting is an epigenetic mechanism that causes functional differences between paternal and maternal genomes, and plays an essential role in mammalian development. Stage-specific changes in the DNA methylation patterns of imprinted genes suggest that their imprints are erased some time during the primordial germ cell (PGC) stage, before their gametic patterns are re-established during gametogenesis according to the sex of individuals. To define the exact timing and pattern of the erasure process, we have analyzed parental-origin-specific expression of imprinted genes and DNA methylation patterns of differentially methylated regions (DMRs) in embryos, each derived from a single day 11.5 to day 13.5 PGC by nuclear transfer. Cloned embryos produced from day 12.5 to day 13.5 PGCs showed growth retardation and early embryonic lethality around day 9.5. Imprinted genes lost their parental-origin-specific expression patterns completely and became biallelic or silenced. We confirmed that clones derived from both male and female PGCs gave the same result, demonstrating the existence of a common default state of genomic imprinting to male and female germlines. When we produced clone embryos from day 11.5 PGCs, their development was significantly improved, allowing them to survive until at least the day 11.5 embryonic stage. Interestingly, several intermediate states of genomic imprinting between somatic cell states and the default states were seen in these embryos. Loss of the monoallelic expression of imprinted genes proceeded in a step-wise manner coordinated specifically for each imprinted gene. DNA demethylation of the DMRs of the imprinted genes in exact accordance with the loss of their imprinted monoallelic expression was also observed. Analysis of DNA methylation in day 10.5 to day 12.5 PGCs demonstrated that PGC clones represented the DNA methylation status of donor PGCs well. These findings provide strong evidence that the erasure process of genomic imprinting memory proceeds in the day 10.5 to day 11.5 PGCs, with the timing precisely controlled for each imprinted gene. The nuclear transfer technique enabled us to analyze the imprinting status of each PGC and clearly demonstrated a close relationship between expression and DNA methylation patterns and the ability of imprinted genes to support development.  相似文献   

15.
The discovery of the phenomenon of genomic imprinting in mammals showed that the parental genomes are functionally non-equivalent. Considerable advances have occurred in the field over the past 20 years, which has resulted in the identification and functional analysis of a number of imprinted genes the expression of which is determined by their parental origin. These genes belong to many diverse categories and they have been shown to regulate growth, complex aspects of mammalian physiology and behavior. Many aspects of the mechanism of imprinting have also been elucidated. However, the reasons for the evolution of genomic imprinting remain enigmatic. Further research is needed to determine if there is any relationship between the apparently diverse functions of imprinted genes in mammals, and their role in human diseases. It also remains to be seen what common features exist amongst the diverse imprinting control elements. The mechanisms involved in the erasure and re-establishment of imprints should provide deeper insights into epigenetic mechanisms of wide general interest.  相似文献   

16.
Genomic imprinting in mammals results in mono-allelic expression of about 80 genes depending on the parental origin of the alleles. Though the epigenetic mechanisms underlying imprinting are rather clear, little is known about the genetic basis for these epigenetic mechanisms. It is still rather enigmatic which sequence features discriminate imprinted from non-imprinted genes/regions and why and how certain sequence elements are recognized and differentially marked in the germlines. It seems likely that specific DNA elements serve as signatures that guide the necessary epigenetic modification machineries to the imprinted regions. Inter- and intraspecific comparative genomic studies suggest that the unusual occurrence and distribution of various types of repetitive elements within imprinted regions may represent such genomic imprinting signatures. In this review we summarize the various observations made and discuss them in light of experimental data.  相似文献   

17.
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.  相似文献   

18.
Key aspects of seed development in flowering plants are held to be under epigenetic control and to have evolved as a result of conflict between the interests of the male and female gametes (kinship theory). Attempts to identify the genes involved have focused on imprinted sequences, although imprinting is only one mechanism by which male or female parental alleles may be exclusively expressed immediately post-fertilization. We have studied the expression of a subset of endosperm gene classes immediately following interploidy crosses in maize and show that departure from the normal 2 : 1 ratio between female and male genomes exerts a dramatic effect on the timing of expression of some, but not all, genes investigated. Paternal genomic excess prolongs the expression of early genes and delays accumulation of reserves, while maternal genomic excess foreshortens the expression period of early genes and dramatically brings forward endosperm maturation. Our data point to a striking interdependence between the phases of endosperm development, and are consonant with previous work from maize showing progression from cell proliferation to endoreduplication is regulated by the balance between maternal and paternal genomes, and from Arabidopsis suggesting that this ‘phasing’ is regulated by maternally expressed imprinted genes. Our findings are discussed in context of the kinship theory.  相似文献   

19.
Paternally expressed imprinted genes (Pegs) were systematically screened by comparing gene expression profiles of parthenogenetic and normal fertilized embryos using an oligonucleotide array. A novel imprinted gene, Peg12/Frat3, was identified along with 10 previously known Pegs. Peg12/Frat3 is expressed primarily in embryonic stages and might be a positive regulator of the Wnt signaling pathway. It locates next to the Zfp127 imprinted gene in the mouse 7C region, which has syntenic homology to the human Prader-Willi syndrome region on chromosome 15q11-q13, indicating that this imprinted region extends to the telomeric side in the mouse.  相似文献   

20.
Genomic imprinting, an epigenetic form of gene regulation, determines the parent-dependent gene expression of marked or imprinted genes during gametogenesis and embryonic development. Imprinting involves differential allele DNA methylation in one sex cell lineage but not in the other. Egg and sperm each contributes the same DNA sequences to the zygote but epigenetic imprinting of a subset of genes determines that only one of the parent alleles are expressed relative to the parental origin. Primordial germ cells inherit biallelically imprinted genes from maternal and paternal origin and erase their imprints to start de novo monoallelic imprinting during gametogenesis. Epigenetic paternalization is an ongoing process in the mitotically-dividing spermatogonial stem cell and derived meiotically-dividing spermatocyte progeny to endow sperm with imprinted alleles. Epigenetic maternalization is restricted to the oocyte growth phase of folliculogenesis and is unrelated to DNA replication since it takes place while the oocyte remains in the diplotene stage of meiotic prophase I. Sperm and oocyte genomic methylation patterns depend on the activity of DNA methyltransferases (Dnmt). A variant of Dnmt1, designated Dnmt1o, accumulates in oocyte nuclei during the follicular growth phase. Dnmt3L, an isoform of Dnmt3a and Dnmt3b, but lacking enzymatic activity, interacts with Dnmt2a and Dnmt3b and is required for spermatogenesis. In the mouse early zygote, the male pronucleus is demethylated within 4 h of fertilization. Global demethylation takes place gradually up to the morula stage. In the blastocyst, de novo methylation is reestablished in the inner cell mass but not in the trophectoderm. Both the significance of genomic imprinting and the severe developmental defects caused by disrupted Dnmt activity, point to a need for a better understanding of the causes of low cloning efficiency by somatic nuclear transfer to enucleated ovulated oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号