首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of phosphor-containing metabolites as regards inorganic phosphate of tissues of the mouse liver after injection of zinc highly dispersed powder at the dose of 5 mg/kg has been established with quantitative calculation of 31P-NMR spectra. A decrease in the relative level of phosphor-containing metabolites in the liver regeneration on the first day after partial hepatectomy has been observed. It has been shown that the relative level of phosphor-containing metabolites after injection more decreased during the first two days after operation. The observed changes of P-compounds metabolites in the liver after injection of zinc highly dispersed powder are related to its stimulation effect on metabolism of sugar and phospholipids and on the cell respiratory process.  相似文献   

2.
Net transfer of 31P and 32P inorganic phosphate form the maternal plasma to the rat chorio-allantoic placenta has been studied after intraperitoneal injection of [32P] ortho-phosphate in primigravid females at the 12th day or late stages of gestation. The concentration and label uptake per unit weight of placenta of the inorganic phosphate (Pi), organic-bound acid-soluble phosphate (POAS) and organic-bound acid-insoluble phosphate (POAIS) fractions are negatively correlated with increasing placental weight, whereas their specific activities are independent of placental weight. The amount and label uptake per whole placenta of the Pi, POAS and POAIS fractions are positively correlated with increasing placental weight. The placental concentrations of inorganic phosphate and calcium are positively related without, however, any marked accumulation of calcium. The growing placenta is thus shown to reduce progressively, on a unit weight basis, both the inorganic phosphate uptake from the maternal plasma and its further incorporation into organic-bound fractions. There is no evidence of a control by the foetal weight, acting per se, on these placental activities.  相似文献   

3.
Accumulation of calcium in the mitochondria of rat liver parenchymal cells at 16 and 24 hours after poisoning with carbon tetrachloride is associated with an increase in amount of liver inorganic phosphate, the persistence of mitochondrial adenosine triphosphatase activity, and the formation of electron-opaque intramitochondrial masses in cells with increased calcium contents. These masses, which form within the mitochondrial matrix adjacent to internal mitochondrial membranes, resemble those observed in isolated mitochondria which accumulate calcium and inorganic phosphate; are present in a locus similar to that of electron opacities which result from electron-histochemical determination of mitochondrial ATPase activity; and differ in both appearance and position from matrix granules of normal mitochondria. After poisoning, normal matrix granules disappear from mitochondria prior to their accumulation of calcium. As calcium-associated electron-opaque intramitochondrial masses increase in size, mitochondria degenerate in appearance. At the same time, cytoplasmic membrane systems of mid-zonal and centrilobular cells are disrupted by degranulation of the rough endoplasmic reticulum and the formation of labyrinthine tubular aggregates. The increase in amount of inorganic phosphate in rat liver following poisoning is balanced by a decreased amount of phosphoprotein. These chemical events do not appear to be related, however, as the inorganic phosphate accumulated is derived from serum inorganic phosphate.  相似文献   

4.
Net transfer of 31P and 32P inorganic phosphate from the maternal plasma to the rat foetus has been studied after intraperitoneal injection of [32P] ortho-phosphate in primigravid females at the 12th day or later stages of gestation. The concentration per unit weight of foetus of the inorganic phosphate (P1) fraction increases markedly with increasing foetal weight; labelling data [inverse relationship between P1 concentration and specific activity, absence of precursor/product relationship between P1 and acid-soluble organic-bound phosphates (POAS)] show this increase to result in part from the formation of a relatively inert metabolic pool, presumably in mineralized tissue. The foetal concentrations of calcium and inorganic phosphate show a strong positive correlation, both increasing markedly with foetal weight. The progressive accumulation of calcium does not, however, account entirely for the rising concentration of inorganic phosphate. The concentration per unit weight of foetus of the POAS fraction remains stable for foetuses smaller than 2 000 mg. In heavier foetuses (greater than 2 000 mg) the POAS concentrations are, with an abrupt transition, distinctly lower, rising however slightly with increasing foetal weight. The concentration per unit weight of foetus of the acid-insoluble organic-bound phosphate (POAIS) fraction decreases slightly with increasing foetal weight. The label uptake per unit weight of foetus of both POAS and POAIS fractions is negatively correlated with increasing foetal weight. The amount and label uptake per whole foetus of the P1, POAS and POAIS fractions are positively correlated with increasing foetal weight. Phosphate transfer to the foetus increases continuously, being maximal at or near birth.  相似文献   

5.
After addition of 5 mM sulfite or nitrite to glucose-metabolizing cells of Saccharomyces cerevisiae a rapid decrease of the ATP content and an inversely proportional increase in the level of inorganic phosphate was observed. The concentration of ADP shows only small and transient changes. Cells of the yeast mutant pet 936, lacking mitochondrial F1ATPase, after addition of 5 mM sulfite or nitrite exhibit changes in ATP, ADP and inorganic phosphate very similar to those observed in wild type cells. They key enzyme of glucose degradation, glyceraldehyde-3-phosphate dehydrogenase was previously shown to be the most sulfiteor nitrite-sensitive enzyme of the glycolytic pathway. This enzyme shows the same sensitivity to sulfite or nitrite in cells of the mutant pet 936 as in wild type cells. It is concluded that the effects of sulfite or nitrite on ATP, ADP and inorganic phosphate are the result of inhibition of glyceraldehyde-3-phosphate dehydrogenase and not of inhibition of phosphorylation processes in the mitochondria. Levels of GTP, UTP and CTP show parallel changes to ATP. This is explained by the presence of very active nucleoside monophosphate kinases which cause a rapid exchange between the nucleoside phosphates. The effects of the sudden inhibition of glucose degradation by sulfite or nitrite on levels of ATP, ADP and inorganic phosphate are discussed in terms of the theory of Lynen (1942) on compensating phosphorylation and dephosphorylation in steady state glucose metabolizing yeast.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - Pi inorganic orthophosphate Dedicated to Prof. Dr. Hans Grisebach on the occasion of his sixtieth birthday  相似文献   

6.
Summary 31P NMR spectra were recorded from tail muscles of the prawnPalaemon serratus, at rest, after exhaustive work and during subsequent recovery. At rest, the spectra indicated concentrations of phosphoarginine and ATP in good agreement with those obtained from resting fast skeletal muscles in mammals, which are characterized by a high phosphocreatine/Pi ratio. Following exhaustive work, phosphoarginine dropped by ca. 60% and ATP by 20%, while inorganic phosphate increased by 160%. The increase in inorganic phosphate immediately after contractions and in the first minutes of recovery corresponded partially to the changes in phosphoarginine and ATP. During recovery, the decrease of inorganic phosphate balanced the resynthesized phosphoarginine which was fully replenished within 30–40 min. The position of the inorganic phosphate resonance peak was used to monitor changes in intracellular pH (pHi). The average pHi in resting tail muscles was 7.20. After stimulation it was observed to decrease by 0.22 units. The return to pre-stimulation value was not achieved within 45 min. A NMR index (ATP+Arg-P)/(ATP+Arg-P+Pi) was calculated to characterize the extent of energetic changes caused by exercise.  相似文献   

7.
31P NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the energy source. All 31P NMR spectra of the yeasts studied indicated the presence of two major intracellular inorganic phosphate pools at different pH environments. The pool at the higher pH was assigned to cytoplasmic phosphate from its response to glucose addition and iodoacetate inhibition of glycolysis. After addition of substrate the pH in the compartment containing the second phosphate pool decreased. A parallel response was observed for a significant fraction of the terminal and penultimate phosphates of the polyphosphate observed by 31P NMR. This suggested that the inorganic phosphate fraction at the lower pH and the polyphosphates originated from the same intracellular compartment, most probably the vacuole. In this vacuolar compartment, pH is sensitive to metabolic conditions. In the presence of energy source a pH gradient as large as 0.8 to 1.5 units could be generated across the vacuolar membrane. Under certain conditions net transport of inorganic phosphate across the vacuolar membrane was observed during glycolysis: to the cytoplasm when the cytoplasmic phosphate concentration had become very low due to sugar phosphorylation, and into the vacuole when the former concentration had become high again after glucose exhaustion.Non-Standard Abbreviations NMR nuclear magnetic resonance - ppm parts per million - PP polyphosphate - Pi,c cytoplasmic inorganic phosphate - Pi,v vacuolar inorganic phosphate - pHin,c cytoplasmic pH - pHin,v vacuolar pH - FCCP carbonyl p-trifluoromethoxyphenylhydrazone  相似文献   

8.
Since alkaline phosphate activity increases in sporulation medium during the developmental period, in spite of the presence of inorganic phosphate, the uptake and intracellular concentration of phosphate were measured. While the uptake of inorganic phosphate decreases and the concentration of acid-soluble organic phosphate remains constant, the intracellular concentration of inorganic phosphate increases to about 30 mM after the end of growth. Some compound other than inorganic phosphate must therefore repress alkaline phosphatase. Other experiments showed that addition of glucose delays both the alkaline phosphatase increase and sporulation by about the same time.  相似文献   

9.
Saccharomyces cerevisiae NCYC 1190 cells accumulated (after 1 h) lead and cadmium at similar levels, and to a lesser degree also copper. During heavy metal accumulation, there was a considerable loss of viability of copper-treated cells (about 99% in the first 20 min of contact with the metal), and a less pronounced lethal effect on cadmium- and lead-treated cells (about 66% and 46% after 1 h of contact with cadmium or lead, respectively) was detected. During copper accumulation, a leakage of UV-absorbing compounds and inorganic phosphate was observed; this did not occur with lead, whereas with cadmium a small amount of leakage of inorganic phosphate was detected. The filtrates of copper-treated cells contained copper-binding molecules. The copper-binding capacity of the filtrates increased with time according to the release of inorganic phosphate and UV-absorbing compounds. These compounds can bind an appreciable quantity of metal ions, making them unavailable for cell uptake and thus reducing the efficiency of heavy metals removal by yeast cells.  相似文献   

10.
The subcutaneous injection of acrylamide (30 mg kg-1 day-1) in adult male rats induces a severe impairment of the general state of health and a progressive polyneuropathy at the cumulative dose of 180 mg/kg. At the cumulative dose of 400 mg acrylamide does not interfere with the incorporation of plasma inorganic phosphate into the inorganic and organic acid-soluble phosphate fractions of either the gastrocnemius muscle or the sciatic nerve Schwann cells. Nor does it modify the characteristic metabolic response of these fractions to Wallerian degeneration and neurogenic muscle atrophy.  相似文献   

11.
The production of beta-galactosidase from the E. coli phoA-lacZ fusion gene was studied to compare the gene expression behavior of two cloning methods: insertion to multicopy plasmids and integration into host cell's chromosome. The chromosome-integrating strain showed more tight control of fusion gene expression levels than the plasmid-containing strain. A 100-fold enhancement of specific beta-galactosidase activity in the former strain was achieved in response to changes of initial inorganic phosphate concentration from 1 to 0.1 mM, whereas a 26-fold increase was observed in the latter strain. The low degree of overexpression in the plasmid-bearing cells was due to a combination of factors including leaky expression in repressed conditions and limitation of biosynthetic machinery in derepressed conditions. In a mixture of inorganic and organic phosphates, inorganic phosphate levels in the medium exhibited oscillatory behavior. The oscillation of inorganic phosphate is attributed to selective usage of inorganic phosphate followed by hydrolysis of organic phosphate to inorganic by alkaline phosphatase. The fluctuation of inorganic phosphate levels also caused the oscillation of beta-galactosidase activity.  相似文献   

12.
Changes in the phosphorus-containing metabolites were monitored by 31P nuclear magnetic resonance in the developing embryos of Clarias batrachus. Phosphomonoester, yolk phosphoprotein, phosphocreatine, ATP, and inorganic phosphate (Pi) were consistently observed in all the developmental stages of C. batrachus. None of these phosphometabolites exhibited any significant change in their concentration up to the blastula stage, whereas distinct decrease in all except inorganic phosphate was observed in the fry stage. Concomitantly an increase in the concentration of inorganic phosphate was observed. Further, from the resonance positions of α, β, and γ phosphate groups of ATP, it was evident that the ATP molecules in vivo were liganded either to Ca2+ or Mg2+. This study also revealed that the intracellular pH of the developing embryos was approximately 7.05 up to the gastrula stage, after which it decreased in the fry stage to 6.98 units. Received August 10, 1998; accepted November 3, 1998.  相似文献   

13.
Phosphorus NMR spectroscopy is an important technique for the investigation of metabolism in tissues and intact organisms (including man). However, quantitation of the signals from an NMR experiment is difficult because it is not known from which regions of a cell metabolites are detected. It is generally believed that only metabolites free in the cytosol are observed. In this study a comparison of concentration measurements obtained by NMR and after freeze extraction was made in the normoxic and ischemic rat heart. The influence of ischemia was examined because of its potential effect on the level of phosphate metabolites in various compartments. The same fraction of ATP always appears visible to NMR, whereas inorganic phosphate is largely NMR invisible until after a period of ischemia and the phosphomonoesters are only partially observed early in ischemia.  相似文献   

14.
Experiments performed at micromolar concentrations of inorganic phosphate support the conclusion that liver phosphofructokinase 2 would be completely inactive in the absence of inorganic phosphate or arsenate. The concentration of inorganic phosphate that allowed half-maximal activity decreased with increasing pH, being approximately 0.11 mM at pH 6.5 and 0.05 mM at pH 8. The effect of phosphate was to increase V and to decrease Km for fructose 6-phosphate, without affecting Km for ATP. Citrate and P-enolpyruvate inhibited the enzyme non-competitively with fructose 6-phosphate and independently of the concentration of inorganic phosphate. Phosphorylation of the enzyme by the catalytic subunit of cyclic-AMP-dependent protein kinase did not markedly modify the phosphate requirement and its effect of inactivating phosphofructokinase 2 could not be counteracted by excess phosphate. A nearly complete phosphate dependency was also observed with phosphofructokinase 2 purified from Saccharomyces cerevisiae or from spinach leaves. By contrast, the fructose 2,6-bisphosphatase activity of the liver bifunctional enzyme was not dependent on the presence of inorganic phosphate. Phosphate increased this activity about threefold when measured in the absence of added fructose 6-phosphate and a half-maximal effect was reached at approximately 0.5 mM phosphate. Like glycerol phosphate, phosphate counteracted the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate, but a much higher concentration of phosphate than of glycerol phosphate was required to reach this effect.  相似文献   

15.
Hemoglobin Abruzzo is an abnormal human hemoglobin with a substitution at a residue known to be involved in the binding of 2,3-diphosphoglyceric acid. It has increased oxygen affinity and reduced heme-heme interaction in the absence of organic or inorganic phosphate cofactors. In inorganic phosphate buffers the Bohr effect and heme-heme interaction are normal, but the oxygen affinity remains higher than that of hemoglobin A. CO combination in inorganic phosphate is more strongly autocatalytic than in normal hemoglobin and a slower rate of oxygen dissociation is observed. Although many of the functional differences of this variant may be attributed to the high oxygen affinity of the mutant beta chains, the interactions between subunits are also affected by the histidine to arginine substitution at beta143. Stripped hemoglobin Abruzzo appears to be significantly more dissociated than hemoglobin A. Kinetic studies indicate that interaction with organic or inorganic phosphates decreases its subunit dissociation. In all of the functional properties examined, hemoglobin Abruzzo is more sensitive to the allosteric influence of organic and inorganic anions than is hemoglobin A.  相似文献   

16.
The variation in starch content in healthy and Puccinia striiformsi-infected wheat leaves was measured from 5 to 15 days after inoculation. The starch content of diseased leaves relative to healthy leaves decreased from 5 to 9 days, increased from 9 to 12 days to twice that of healthy leaves, and decreased from 12 to 15 days after inoculation. Electron micrographs of plant tissues indicated that the starch accumulated in the chloroplasts of host cells adjacent to fungal hyphae. Variations in sugar phosphates, ATP, and inorganic phosphate were measured during the infection process. ADP-glucose pyrophosphorylase was extracted and partially purified from healthy and diseased leaves. When proportionate concentrations of sugar phosphates and inorganic phosphate found in healthy and diseased leaves during the infection process were placed in the assay mixture, ADP-glucose pyrophosphorylase activity was similar to the pattern of starch accumulation and was almost the inverse of the variation observed in inorganic phosphate in diseased leaves during the infection process. A mechanism to explain the accumulation of starch is presented and discussed. This mechanism is based on the regulation of ADP-glucose pyrophosphorylase by changes in effector molecule concentrations during the infection process. Reasons for these changes are presented.  相似文献   

17.
纳米羟基磷灰石/胶原复合材料制备方法研究   总被引:9,自引:0,他引:9  
研究了在脱钙骨基质内原位沉积纳米羟基磷灰石的电化学方法,探讨了影响沉积的实验因素和条件.并利用红外光谱和X衍射表征无机相的组成,透射电子显微镜观测晶体的形态和尺寸,光学显微镜观察无机相分布,灰化法测定无机成分含量.结果表明,电化学方法可以制备出纳米羟基磷灰石/胶原复合材料,其无机成分为53 9±3.2%,并且无机相的组成、分布、性质与自然骨非常一致,是纳米复合材料.  相似文献   

18.
31P nuclear magnetic resonance (NMR) was used to directly observe the binding of inorganic phosphate to alkaline phosphatase. Evidencq for the tight binding of 1.5-2.0 mol of inorganic phosphate per dimer of alkaline phosphatase is presented. Two distinct forms of bound phosphate are observed, one predominating above pH 7 and representing the non-covalent E-P1 complex and the other predominating below pH 5 and representing the covalent E-P1 complex. The 31P NMR line width of the E-P1 complex indicates that the dissociation of noncovalent phosphate is the rate-limiting step in the turnover of the enzyme at high pH.  相似文献   

19.
The effect of inorganic phosphate on biosynthesis of the polyene antibiotic levorin by Streptomyces levoris was studied. At phosphate concentration of 4.0 mM levorin biosynthesis is repressed by 90%, resulting in an increase of ATP and a condensed inorganic polyphosphates content in the producer cells. At phosphate concentration optimal for levorin production (0.04 mM) the level of intracellular ATP sharply falls by the beginning of the steady-state phase of the producer growth and that of polyphosphates decreases 3-6-fold. The inorganic phosphate exerts different effects on polyphosphate metabolism enzymes, such as polyphosphate: D-glucose-6-phosphotransferase, polyphosphate phosphohydrolase, tripolyphosphate phosphohydrolase, pyrophosphate phosphohydrolase, alkaline and acid phosphatase. The strongest effect of phosphate excess is observed in the case of polyphosphate: D-glucose-6-phosphotransferase, whose activity decreases 2-5-fold. The activity of this enzyme was shown to be correlated with the antibiotic accumulation. The data obtained are indicative of interrelationship between the polyphosphate metabolism and levorin biosynthesis.  相似文献   

20.
31P NMR spectroscopic analysis of the polyphosphate pool in cellular and nuclear extracts of Physarum polycephalum demonstrates that plasmodia and cysts contain inorganic polyphosphates with an average chain length of about 100 phosphates. However, only during sporulation are these high-molecular-weight polyphosphates degraded to a lower molecular weight corresponding to an average chain length of about 10 phosphates. Since polyphosphates are degraded even in the presence of a sufficiently large pool of inorganic phosphate, produced by intracellular injection, we conclude that the degradation of polyphosphates serves in supplying energy for biosynthesis during sporulation rather than in increasing the availability of phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号