首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upstream regulatory role for XIAP in receptor-mediated apoptosis   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.  相似文献   

2.
Our study reports that staurosporine induces apoptosis in cultured rat hepatocytes in a dose- and time-dependent fashion. Staurosporine induced apparent cleavage of caspase-8, caspase-9, and caspase-3. The release of cytochrome c from mitochondria, and Bid activation were also detected in staurosporine-treated primary hepatocytes. These results suggest that mitochondria-mediated cell death signaling may be involved in staurosporine-induced hepatocyte apoptosis. Bcl-x(L) overexpression protected from "loss of" mitochondrial transmembrane potential and prevented staurosporine-induced caspase-3 and caspase-8 cleavage. Overexpression of constitutively active ERK and PKB inhibited staurosporine-induced caspase-3 activation and hepatocyte death. PI3K inhibitor (LY294002) and ERK inhibitor (PD98059) significantly reversed the protective effects of Bcl-x(L) on staurosporine-induced hepatocyte death. Our data suggest that Bcl-x(L) prevents staurosporine-induced hepatocyte apoptosis by modulating protein kinase B and p44/42 mitogen-activated protein kinase activity and disrupts mitochondria death signaling.  相似文献   

3.
Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1   总被引:9,自引:0,他引:9  
Bcl-x(L), an antiapoptotic Bcl-2 family member, is postulated to function at multiple stages in the cell death pathway. The possibility that Bcl-x(L) inhibits cell death at a late (postmitochondrial) step in the death pathway is supported by this report of a novel apoptosis inhibitor, Aven, which binds to both Bcl-x(L) and the caspase regulator, Apaf-1. Identified in a yeast two-hybrid screen, Aven is broadly expressed and is conserved in other mammalian species. Only those mutants of Bcl-x(L)that retain their antiapoptotic activity are capable of binding Aven. Aven interferes with the ability of Apaf-1 to self-associate, suggesting that Aven impairs Apaf-1-mediated activation of caspases. Consistent with this idea, Aven inhibited the proteolytic activation of caspases in a cell-free extract and suppressed apoptosis induced by Apaf-1 plus caspase-9. Thus, Aven represents a new class of cell death regulator.  相似文献   

4.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

5.
Tornero D  Posadas I  Ceña V 《PloS one》2011,6(6):e20423
Apoptosis is an active process that plays a key role in many physiological and pathological conditions. One of the most important organelles involved in apoptosis regulation is the mitochondrion. An increase in intracellular Ca(2+) is a general mechanism of toxicity in neurons which occurs in response to different noxious stimuli like excitotoxicity and ischemia producing apoptotic and necrotic cell death through mitochondria-dependent mechanisms. The Bcl-2 family of proteins modulate the release of pro-apoptotic factors from the mitochondrial intermembrane space during cell death induction by different stimuli. In this work, we have studied, using single-cell imaging and patch-clamp single channel recording, the mitochondrial mechanisms involved in the neuroprotective effect of Bcl-x(L) on Ca(2+) overload-mediated cell death in human neuroblastoma SH-SY5Y cells. We have found that Bcl-x(L) neuroprotective actions take place at mitochondria where this antiapoptotic protein delays both mitochondrial potential collapse and opening of the permeability transition pore by preventing Ca(2+)-mediated mitochondrial multiple conductance channel opening. Bcl-x(L) neuroprotective actions were antagonized by the Bcl-x(L) inhibitor ABT-737 and potentiated by the Ca(2+) chelator BAPTA-AM. As a consequence, this would prevent free radical production, mitochondrial membrane permeabilization, release from mitochondria of pro-apoptotic molecules, caspase activation and cellular death.  相似文献   

6.
Recent work suggests a participation of mitochondria in apoptotic cell death. This role includes the release of apoptogenic molecules into the cytosol preceding or after a loss of mitochondrial membrane potential DeltaPsim. The two uncouplers of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2, 4-dinitrophenol (DNP) reduce DeltaPsim by direct attack of the proton gradient across the inner mitochondrial membrane. Here we show that both compounds enhance the apoptosis-inducing capacity of Fas/APO-1/CD95 signaling in Jurkat and CEM cells without causing apoptotic changes on their own account. This amplification occurred upstream or at the level of caspases and was not inhibited by Bcl-2. The effect could be blocked by the cowpox protein CrmA and is thus likely to require caspase 8 activity. Apoptosis induction by staurosporine in Jurkat cells as well as by Fas in SKW6 cells was unaffected by CCCP and DNP. The role of cytochrome c during Fas-DNP signaling was investigated. No early cytochrome c release from mitochondria was detected by Western blotting. Functional assays with cytoplasmic preparations from Fas-DNP-treated cells also indicated that there was no major contribution by cytochrome c or caspase 9 to the activation of effector caspases. Furthermore, an increase of rhodamine-123 uptake into intact cells, which has been explained by mitochondrial swelling, occurred considerably later than the caspase activation and was blocked by Z-VAD-fmk. These data show that uncouplers of oxidative phosphorylation can presensitize some but not all cells for a Fas death signal and provide information about the existence of separate pathways in the induction of apoptosis.  相似文献   

7.
Exposure of phosphatidylserine (PS) on the outer leaflet of the plasma membrane is a key feature of apoptosis. As the signals underlying these phenomena are unknown, it is generally assumed that PS exposure is a consequence of caspase activation, another hallmark of apoptosis. In this study we investigated the role of caspases in PS externalization during apoptosis of activated PBL triggered by drugs (etoposide, staurosporine), CD95 engagement, or IL-2 withdrawal. Anti-CD95 mAb induces a rapid activation of caspases, followed by PS exposure and mitochondrial transmembrane potential (DeltaPsim) disruption. In contrast, etoposide (ETO), staurosporine (STS), or IL-2 withdrawal triggers concomitant caspase activation, PS exposure, and DeltaPsim disruption. Such kinetics suggest that PS exposure could be independent of caspase activation. As expected, in activated PBL treated by anti-CD95 mAb, the pan-caspase inhibitor Cbz-Val-Ala-Asp(OMe)-fluoromethylketone and the caspase-8 inhibitor Cbz-Leu-Glu-Thr-Asp(OMe)-fluoromethylketone, but not the caspase-9 inhibitor Cbz-Leu-Glu-His-Asp(OMe)-fluoromethylketone, inhibit PS externalization and DeltaPsim disruption. Surprisingly, during apoptosis induced by ETO, STS, or IL-2 withdrawal, none of those caspase inhibitors prevents PS externalization or DeltaPsim disruption, whereas they all inhibit DNA fragmentation as well as the morphological features of nuclear apoptosis. In Jurkat and H9 T cell lines, as opposed to activated PBL, PS exposure is inhibited by Cbz-Val-Ala-Asp(OMe)-fluoromethylketone during apoptosis induced by CD95 engagement, ETO, or STS. Thus, caspase-independent PS exposure occurs in primary T cells during apoptosis induced by stimuli that do not trigger death receptors.  相似文献   

8.
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.  相似文献   

9.
Apaf1 is a critical molecule in the mitochondria-dependent apoptotic pathway. Here we show that Apaf1-deficient embryonic fibroblasts died at a later phase of apoptotic induction, although these cells were resistant to various apoptotic stimulants at an early phase. Neither caspase 3 activation nor nuclear condensation was observed during this cell death of Apaf1-deficient cells. Electron microscopic examination revealed that death in response to apoptotic stimulation resembled necrosis in that nuclei were round and swollen with low electron density. Necrosis-like cell death was also observed in wild-type cells treated with z-VAD-fmk. Mitochondria were not only morphologically abnormal but functionally affected, since mitochondrial transmembrane potential (DeltaPsim) was lost even in cells with intact plasma membrane integrity. These mitochondrial alterations were also observed in the wild-type cells dying of apoptosis. Combined, these data suggest that cells without caspase activation, such as Apaf1-deficient cells or cells treated with caspase inhibitors, die of necrosis-like cell death with mitochondrial damage in response to "apoptotic stimulation."  相似文献   

10.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

11.
Macrophages play a pivotal role in the pathogenesis of a variety of diseases. These studies were performed to characterize the mechanisms by which Toll-like receptor 4 (TLR4)-mediated NF-kappaB activation promotes resistance to cell death in macrophages. When NF-kappaB activation was inhibited by a super-repressor, IkappaBalpha, the TLR4 ligand lipopolysaccharide induced the activation of caspase 8, the loss of mitochondrial transmembrane potential (DeltaPsim), and apoptotic cell death in macrophages. The inhibition of caspase 8 activation suppressed DNA fragmentation but failed to protect macrophages against the loss of DeltaPsim and resulted in necrotic cell death. In contrast, the reduction of receptor-interacting protein 1 suppressed the loss of DeltaPsim and inhibited apoptotic cell death. Further, when caspase 8 activation was suppressed, the knock down of receptor-interacting protein inhibited the loss of DeltaPsim and necrotic cell death. These observations demonstrate that following TLR4 ligation by lipopolysaccharide, NF-kappaB is a critical determinant of macrophage life or death, whereas caspase 8 determines the pathway employed.  相似文献   

12.
13.
Granzyme B (GrB), acting similar to an apical caspase, efficiently activates a proteolytic cascade after intracellular delivery by perforin. Studies here were designed to learn whether the physiologic effector, GrB-serglycin, initiates apoptosis primarily through caspase-3 or through BH3-only proteins with subsequent mitochondrial permeabilization and apoptosis. Using four separate cell lines that were either genetically lacking the zymogen or rendered deficient in active caspase-3, we measured apoptotic indices within whole cells (active caspase-3, mitochondrial depolarization [DeltaPsim] and TUNEL). Adhering to these conditions, the following were observed in targets after GrB delivery: (a) procaspase-3-deficient cells fail to display a reduced DeltaPsim and DNA fragmentation; (b) Bax/Bak is required for optimal DeltaPsim reduction, caspase-3 activation, and DNA fragmentation, whereas BID cleavage is undetected by immunoblot; (c) Bcl-2 inhibits GrB-mediated apoptosis (reduced DeltaPsim and TUNEL reactivity) by blocking oligomerization of caspase-3; and (d) in procaspase-3-deficient cells a mitochondrial-independent pathway was identified which involved procaspase-7 activation, PARP cleavage, and nuclear condensation. The data therefore support the existence of a fully implemented apoptotic pathway initiated by GrB, propagated by caspase-3, and perpetuated by a mitochondrial amplification loop but also emphasize the presence of an ancillary caspase-dependent, mitochondria-independent pathway.  相似文献   

14.
The potential role of caveolin-1 in apoptosis remains controversial. Here, we investigate whether caveolin-1 expression is proapoptotic or antiapoptotic using a well-defined antisense approach. We show that NIH/3T3 cells harboring antisense caveolin-1 are resistant to staurosporine-induced apoptosis, as assessed using cell morphology, DNA content, caspase 3 activation, and focal adhesion kinase cleavage. Importantly, sensitivity to apoptosis is recovered when caveolin-1 levels are restored. Conversely, recombinant stable expression of caveolin-1 in T24 bladder carcinoma cells sensitizes these cells to caspase 3 activation. Consistent with the observations using NIH/3T3 cells, downregulation of caveolin-1 in T24 cells substantially diminishes caspase 3-like activity. Loss of sensitivity to apoptotic stimulation is recovered by inhibition of the phosphatidylinositol 3-kinase pathway using LY-294002, suggesting a possible mechanism for the sensitizing effect of caveolin-1. Thus our results suggest that caveolin-1 may act as a coupling or sensitizing factor in signaling apoptotic cell death in both fibroblastic (NIH/3T3) and epithelial (T24) cells.  相似文献   

15.
FL5.12 pro-B lymphoma cells utilize the mitochondrial pathway to apoptosis in response to tumor necrosis factor (TNF) receptor occupation, yet high levels of the Bcl-2 family antiapoptotic protein, Bcl-x(L), fail to protect these cells against TNF-receptor-activated death. Bcl-x(L) expression delays, but does not totally block, the release of mitochondrial cytochrome c (cyt c) in these cells in response to TNFalpha-induced apoptosis and caspase-9 is processed prior to mitochondrial cyt c release under these circumstances. Early processing of caspase-9 also occurred in Apaf-1 knockout murine fibroblasts in response to TNF-receptor occupation. A caspase-9-specific inhibitor was more effective in delaying the progression of apoptosis in the FL5.12 Bcl-x(L) cells than was an inhibitor specific to caspase-3. Furthermore, downregulation of caspase-9 levels by RNA interference resulted in partial protection of these cells against TNF-receptor-activated apoptosis, indicating that caspase-9 activation contributed to early amplification of the caspase cascade. Consistent with this, proteolytic processing of caspase-9 was observed prior to processing by caspase-3, suggesting that caspase-3 was not responsible for early caspase-9 activation. We show that murine caspase-9 is efficiently processed by active caspase-8 at SEPD, the motif at which caspase-9 autoprocesses following its recruitment to the apoptosome. Our results suggest that, in addition to processing procaspase-3 and the BH3 protein Bid, active caspase-8 can cleave and activate procaspase-9 in response to TNF receptor crosslinking in murine cells.  相似文献   

16.
Bcl-2 proteins are major regulators of cellular responses to intrinsic and extrinsic apoptotic stimuli. Among them, overexpression of the antiapoptotic protein Bcl-x(L) modulates intracellular Ca(2+) homeostasis and organelle-specific apoptotic signaling pathways. However, the specific activities of Bcl-x(L) at mitochondria and the endoplasmic reticulum (ER) have not been fully defined. To further explore this, we generated mouse embryonic fibroblast (MEF) cell lines deficient in Bcl-x(L) expression (Bcl-x-KO). Deficiency in Bcl-x(L) expression did not induce compensatory changes in the expression of other Bcl-2 proteins, and Bcl-x-KO MEF cells showed increased sensitivity to various apoptotic stimuli compared with wild-type MEF cells. Targeting Bcl-x(L) at mitochondria but not at the ER restored apoptosis protection in Bcl-x-KO MEF cells to the degree observed in wild-type MEF cells. However, expression of ER-targeted Bcl-x(L) but not mitochondrially targeted Bcl-x(L) was required to restore Ca(2+) homeostasis in Bcl-x-KO MEF cells. Of importance, ER-targeted Bcl-x(L) was able to protect cells against death stimuli in the presence of endogenous Bcl-x(L). These data indicate that mitochondrial Bcl-x(L) can regulate apoptosis independently of ER Bcl-x(L) and that when localized exclusively at the ER, Bcl-x(L) impinges on Ca(2+) homeostasis but does not affect apoptosis unless Bcl-x(L) is present in additional cellular compartments.  相似文献   

17.
Previous studies have suggested that cells undergo apoptosis in response to dengue virus infection. However, the potential significance of dengue virus-induced apoptosis and the pathways are still not clearly defined. In this study, comparative analysis of dengue virus-induced apoptosis in BHK, H1299, HUH-7 and Vero cell lines was carried out. We show here that infection of BHK, HUH-7 and Vero cell lines with dengue type 1 virus (DEN1V) induces cell death typical of apoptosis. Virus-induced cell death was assayed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, detection of oligonucleosomal DNA fragmentation, DNA content analysis and assay for the externalization of phosphatidylserine residues. Detailed study of dengue virus infection in HUH-7 cells showed activation of cell death via the mitochondrial pathway causing lowering of mitochondrial transmembrane potential (DeltaPsim) in HUH-7 cells. Interestingly, in the p53-deficient cell line, H1299, apoptosis was largely undetectable compared with the other cell lines used; suggesting that a p53- and mitochondria-mediated cell death pathway may play an important role in dengue virus-induced apoptosis.  相似文献   

18.
The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50-200 microm H(2)O(2) caused the activation of caspase-3 beginning after 2-3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H(2)O(2)-induced caspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H(2)O(2) or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss.  相似文献   

19.
Mast cells play a critical role in the host defense against bacterial infection. Recently, apoptosis has been demonstrated to be essential in the regulation of host response to Pseudomonas aeruginosa. In this study we show that human mast cell line HMC-1 and human cord blood-derived mast cells undergo apoptosis as determined by the ssDNA formation after infection with P. aeruginosa. P. aeruginosa induced activation of caspase-3 in mast cells as evidenced by the cleavage of D4-GDI, an endogenous caspase-3 substrate and the generation of an active form of caspase-3. Interestingly, P. aeruginosa treatment induced up-regulation of Bcl-x(S) and down-regulation of Bcl-x(L). Bcl-x(S), and Bcl-x(L) are alternative variants produced from the same Bcl-x pre-mRNA. The former is proapoptotic and the latter is antiapoptotic likely through regulating mitochondrial membrane integrity. Treatment of mast cells with P. aeruginosa induced release of cytochrome c from mitochondria and loss of mitochondrial membrane potentials. Moreover, P. aeruginosa treatment reduced levels of Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory proteins (FLIPs) that are endogenous apoptosis inhibitors through counteraction with caspase-8. Thus, human mast cells undergo apoptosis after encountering P. aeruginosa through a mechanism that likely involves both the Bcl family protein mitochondrial-dependent and the FLIP-associated caspase-8 pathways.  相似文献   

20.
Necrotic death pathway in Fas receptor signaling   总被引:12,自引:0,他引:12  
A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a loss of mitochondrial transmembrane potential (DeltaPsim), but not by the release of cytochrome c from mitochondria. Pyrrolidine dithiocarbamate, a metal chelator and antioxidant, efficiently inhibited the FADD-induced reduction of DeltaPsim and necrotic cell death. When human Jurkat, or its transformants, expressing mouse Fas were treated with Fas ligand or anti-mouse Fas antibodies, the cells died, showing characteristics of apoptosis. A broad caspase inhibitor (z-VAD-fmk) blocked the apoptotic morphological changes and the release of cytochrome c. However, the cells still died, and this cell death process was accompanied by a strong reduction in DeltaPsim, as well as necrotic morphological changes. The presence of z-VAD-fmk and pyrrolidine dithiocarbamate together blocked cell death, suggesting that both apoptotic and necrotic pathways can be activated through the Fas death receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号