首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

2.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    3.
    An ATP-dependent transport system which is active at concentrations of free Ca2+ in the submicromolar range has been identified in adipocyte plasma membranes. The system appears to represent the functional component of the high affinity insulin-sensitive calcium-stimulated, magnesium-dependent adenosine triphosphatase preveiously described in the same preparation (Pershadsingh, H. A., and McDonald, J. M. (1979) Nature 281, 495-497). This ATP-dependent Ca2+ transport pump was stimulated approximately 3-fold by the Ca2+-dependent regulatory protein, calmodulin. This effect was confined to the plasma membrane since a similar effect was undetectable in the fraction enriched in endoplasmic reticulum. Calmodulin stimulation was dose-dependent but saturable with half-maximal activation occurring at 0.72 microgram/ml (43 nM). Calmodulin appeared to stimulate the system primarily by decreasing the apparent half-maximal saturation constant for free Ca2+ from 0.20 +/- 0.04 microM to 0.07 +/- 0.01 microM (n = 3). The Hill coefficient increased from 1.6 +/- 0.2 to 3.2 +/- 0.6 (n = 3), thus showing an increased positive cooperativity which allows the pump to be activated by an exceedingly narrow Ca2+ threshold in the presence of calmodulin. The calmodulin stimulation of the plasma membrane Ca2+ extrusion pump in adipocytes, working in opposition to metabolic signals which increase cytoplasmic Ca2+, could constitute a self-regulating negative feedback device for maintaining a low steady state level of intracellular Ca2+. This feedback system may be of critical importance in regulation of cellular metabolism by insulin.  相似文献   

    4.
    The role of the phosphorylation and dephosphorylation of sarcolemma and that of the alteration of membrane lipids in the endotoxin-induced impairment of the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results indicate that the ATP-dependent Ca2+ transport in canine cardiac sarcolemma was decreased by 30–35% 4h after endotoxin administration. Phosphorylation of sarcolemma by the catalytic subunit of the cAMP-dependent protein kinase or calmodulin stimulated ATP-dependent Ca2+ transport in both groups, however, the phosphorylation-stimulated activities remained significantly lower in endotoxic animals. Dephosphorylation of sarcolemma decreased ATP-dependent Ca2+ transport in both groups, yet, the time required to reach maximal dephosphorylation was reduced from 120 to 90 min 4 h post-endotoxin. Analysis of sarcolemmal membranes reveals that phosphatidylcholine and phosphatidylethanolamine contents were decreased while their respective lysophosphatide levels were increased significantly after endotoxin injection. Digestion of control heart sarcolemma with phospholipase A2 inhibited Ca2+ transport and the inhibition was reversible by phosphatidylcholine. The inhibition caused by the in vivo administration of endotoxin was completely reversible by the addition of phosphatidylcholine. Based on these data, it is concluded that endotoxin administration impairs ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment may be due to i) a defective phosphorylation of sarcolemma; ii) a reduced number of Ca2+ pumps; iii) an accelerated dephosphorylation of sarcolemma; and iv) an alteration in membrane phospholipid profile in response to phospholipase A activation.  相似文献   

    5.
    The Ca2+ actively accumulated by sarcoplasmic reticulum isolated from skeletal muscle is composed of two fractions; one represented by intravesicular free Ca2+ and another represented by Ca2+ selectively bound to the membranes. Both of these Ca2+ fractions depend on ATP, although it is not clear whether ATP hydrolysis is essential for accumulation of the second Ca2+ fraction. The existence of the membrane-bound Ca2+ induced by ATP is clearly shown in experiments in which the Ca2+ retention by sarcoplasmic reticulum is measured in the presence and in the absence of X-537A, a Ca2+ ionophore, which makes the membrane permeable to Ca2+. Thus, in the presence of X-537A all Ca2+ accumulated due to ATP is bound to the membranes. This membrane-bound Ca2+ represents about 30 nmol/mg protein in the range of external pCa values of 7 to 3.5. The magnitude of this Ca2+ fraction is slightly higher whether or not the experiments are performed in the presence of oxalate, which greatly increased the intravesicular Ca2+ accumulation. Furthermore, taking advantage of the impermeability of sarcoplasmic reticulum to EGTA, it is possible to show the existence of the membrane-bound Ca2+ as a distinct fraction from that which exists intravesicularly.  相似文献   

    6.
    Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

    7.
    Calmodulin activates the ATP-dependent transport of Ca2+. The V0 value for this reaction in the absence of calmodulin is 0.82, that in the presence of 10(-7) M calmodulin is 5 times as high, i. e. 4.5 nmol 45Ca2+/mg protein/min. The Vmax value in the absence of calmodulin is 2.07, that with the activator is 4.33 nmol 45Ca2+/mg protein/min. The corresponding Km values are 0.75 X 10(-6) M and 0.66 X 10(-7) M, respectively, i. e., the affinity of the Ca-pump for Ca2+ increases. The half-maximum Ca-binding activity of calmodulin measured with a help of the fluorescent probe, N-phenyl-1-naphthylamine (PNA), is observed at 5 X 10(-7) M Ca2+. Mg2+ (3 mM) decreases 10-fold the Ca-binding affinity. No significant effect of ATP on the Ca-binding properties of calmodulin was found; the Hill coefficient is suggestive of a positive cooperativity of this reaction. A comparison of dependences of the calmodulin-stimulated component of ATP-dependent transport of Ca2+ in myometrium plasma membranes and of the Ca-binding activity of calmodulin measured with a help of PNA suggests that the effect of calmodulin on the affinity of the Ca-pump for Ca2+ can also be realized when some (but not all) Ca-binding sites in the calmodulin molecule are saturated with Ca2+.  相似文献   

    8.
    A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

    9.
    Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

    10.
    In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

    11.
    ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

    12.
    We have reported previously that the pectoralis muscle from three month-old dystrophic chickens with signs of myopathy exhibits increased calmodulin content, elevated calmodulin-specific mRNA (Biochem. Biophys. Res. Commun. 137:507-512, 1986), and reduced sarcoplasmic reticulum (SR) Ca2+-ATPase activity in response to calmodulin exposure in vitro (Clin. Res. 34: 725A, 1986). To determine the early time sequence for development of these abnormalities, we have studied muscle from embryos and post-hatched chickens at various ages. Quantitated by dot blot analysis, there was an approximate two-fold increase in calmodulin-specific mRNA in dystrophic muscle as early as 13 days ex ovo which was maintained throughout development up to three months ex ovo. Similarly, Ca2+-ATPase activity measured in SR membranes from chickens as early as 13 days post-hatch was also found to be resistant to stimulation in vitro by exogenous calmodulin, whereas the enzyme from normal muscle was calmodulin-stimulable. These findings suggest that the genetic lesion expressed in the avian dystrophic animal model involves the loss of normal control of intracellular calcium metabolism early in the maturation of the affected musculature and prior to appearance of disease signs.  相似文献   

    13.
    ATP-dependent Ca2+ transport was investigated in a rat parotid microsomal-membrane preparation enriched in endoplasmic reticulum. Ca2+ uptake, in KCl medium, was rapid, linear with time up to 20 s, and unaffected by the mitochondrial inhibitors NaN3 and oligomycin. This Ca2+ uptake followed Michaelis-Menten kinetics, and was of high affinity (Km approximately 38 nM) and high capacity (approximately 30 nmol/min per mg of protein). In the presence of oxalate, Ca2+ uptake continued to increase for at least 5 min, reaching an intravesicular accumulation approx. 10 times higher than without oxalate. Ca2+ uptake was dependent on univalent cations in the order K+ = Na+ greater than trimethylammonium+ greater than mannitol and univalent anions in the order Cl- greater than acetate- greater than Br- = gluconate- = NO3- greater than SCN-. Ca2+ uptake was not elevated if membranes were incubated in the presence of a lipophilic anion (NO3-) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Ca2+ transport was altered by changes in the K+-diffusion potential of the membranes. A relatively negative K+-diffusion potential increased the initial rate of Ca2+ accumulation, whereas a relatively positive potential decreased Ca2+ accumulation. In the presence of an outwardly directed K+ gradient, nigericin had no effect on Ca2+ uptake. In aggregate, these studies suggest that the ATP-dependent Ca2+-transport mechanism present in rat parotid microsomal membranes exhibits an electrogenic Ca2+ flux which requires the movement of other ions for charge compensation.  相似文献   

    14.
    Calmodulin regulation of ATP-dependent Ca2+ transport activity was assessed in inverted basolateral plasma membrane vesicles (BLMV) isolated from rat parotid glands. The initial rate of Ca2+ transport in media containing 100 nM Ca2+ was stimulated by approximately 60% at maximal concentrations (300 nM) of exogenously added calmodulin (CAM). Half-maximal activation was obtained at 50 and 175 nM CAM in KCl and mannitol containing assay media, respectively. In the KCl medium, addition of 300 nM CAM increased the affinity of the BLMV Ca2+ transport activity for Ca2+ from approximately 70 nM, in the absence of added CAM, to approximately 50 nM. Vmax was consistently increased by approximately 20% under these conditions. When BLMV were treated with ethylene glycol bis(beta-aminoethylether) N,N'-tetraacetic acid (EGTA) (200 microM), the affinity of the transporter for Ca2+ decreased by 50% to approximately 150 nM, with no change in Vmax. When CAM was added to the EGTA-treated membranes, Ca2+ transport activity was comparable to that obtained when CAM was added directly to control, untreated BLMV. The CAM antagonists, trifluoperazine (TFP), W-7, and calmidazolium, inhibited Ca2+ transport in the presence of CAM. Half-maximal inhibition of transport was achieved by 12 microM TFP and 20 microM W-7. Calmidazolium (1 microM) inhibited Ca2+ transport by 75%. The inhibitory effects on ATP-dependent Ca2+ transport exerted by these agents were not due to an increase in the passive permeability of the membranes to Ca2+. Furthermore, in the absence of added CAM, the inhibitory effects of these agents on initial Ca2+ transport rate was decreased. The data presented suggest that the Ca2+-dependent interaction of CAM with the ATP-dependent Ca2+ transporter in rat parotid BLMV modifies the kinetic properties of this Ca2+ transporting mechanism.  相似文献   

    15.
    The migration of intestinal epithelial cells from the crypts to the tips of villi is associated with progressive cell differentiation. The changes in Ca2+-ATPase activity and ATP-dependent Ca2+-transport rates in basolateral membranes from rat duodenum were measured during migration along the crypt-villus axis. In addition, vitamin D-dependent calcium-binding protein and calmodulin content were measured in homogenates of six cell populations which were sequentially derived from villus tip to crypt base. Alkaline phosphatase activity was highest at the tip of the villus (fraction I) and decreased more than 20-fold towards the crypt base (fraction VI). (Na+ + K+)-ATPase activity also decreased along the villus-crypt axis but in a less pronounced manner than alkaline phosphatase. ATP-dependent Ca2+-transport in basolateral membranes was highest in fraction II (8.2 +/- 0.3 nmol Ca2+/min per mg protein) and decreased slightly towards the villus tip and base (fraction V). The youngest cells in the crypt had the lowest Ca2+-transport activity (0.9 +/- 0.1 nmol Ca2+/min per mg protein). The distribution of high-affinity Ca2+-ATPase activity in basolateral membranes correlated with the distribution of ATP-dependent Ca2+-transport. The activity of Na+/Ca2+ exchange was equal in villus and crypt basolateral membranes. Compared to the ATP-dependent Ca2+-transport system, the Na+/Ca2+ exchanger is of minor importance in villus cells but may play a more significant role in crypt cells. Calcium-binding protein decreased from mid-villus towards the villus base and was undetectable in crypt cells. Calmodulin levels were equal along the villus-crypt axis. It is concluded that vitamin D-dependent calcium absorption takes primarily place in villus cells of rat duodenum.  相似文献   

    16.
    ATP-dependent Ca2+ transport was studied in rat parotid microsomes; the activity appears to be associated with rough endoplasmic reticulum vesicles, as indicated by marker distribution in subcellular fractions and by electron microscopic observations. Purified rough microsomes exhibit an ATP-dependent Ca2+ accumulation and a Ca2+-dependent ATPase activity; these activities are similarly stimulated by K+ and display an apparent Km for free calcium of 0.6-0.7 microM. A phosphoprotein, with a molecular weight of about 110,000, was detected after short incubation with [gamma 32P] ATP and CaCl2; it is suggested that this compound represents a phosphorylated intermediate form of the Ca2+-ATPase.  相似文献   

    17.
    In avian and mammalian embryos, surgical ablation or severely reduced migration of the cardiac neural crest leads to a failure of outflow tract septation known as persistent truncus arteriosus (PTA) and leads to embryo lethality due partly to impaired excitation-contraction coupling stemming primarily from a reduction in the L-type Ca(2+) current (I(Ca),(L)). Decreased I(Ca,L) occurs without a corresponding reduction in the alpha(1)-subunit of the Ca(2+) channel. We hypothesize that decreased I(Ca),(L) is due to reduced function at the single channel level. The cell-attached patch clamp with Na(+) as the charge carrier was used to examine single Ca(2+) channel activity in myocytes from normal hearts from sham-operated embryos and from hearts diagnosed with PTA at embryonic days (ED) 11 and 15 after laser ablation of the cardiac neural crest. In normal hearts, the number of single channel events per 200-ms depolarization and the mean open channel probability (P(o)) was 1.89 +/- 0.17 and 0.067 +/- 0.008 for ED11 and 1.14 +/- 0.17 and 0.044 +/- 0.005 for ED15, respectively. These values represent a normal reduction in channel function and I(Ca),(L) observed with development. However, the number of single channel events was significantly reduced in hearts with PTA at both ED11 and ED15 (71% and 47%, respectively) with a corresponding reduction in P(o) (75% and 43%). The open time frequency histograms were best fitted by single exponentials with similar decay constants (tau approximately or equal 4.5 ms) except for the sham operated at ED15 (tau = 3.4 ms). These results indicate that the cardiac neural crest influences the development of myocardial Ca(2+) channels.  相似文献   

    18.
    Recent studies have focused on developing transgenic mouse models to explore the physiological roles of sarcoplasmic reticulum (SR) calcium handling proteins. The goal of this study was to develop methodology to measure SR Ca2+ transport function and enzymatic properties of SR Ca2+ ATPase (SERCA) in individual mouse hearts. We describe here the procedures to specifically measure SR Ca2+ uptake, the formation and decomposition of SERCA phosphoenzyme intermediate (E-P) in mouse cardiac homogenates. The specificity of SERCA enzymatic activity in cardiac homogenates was established by (a) the selective inhibition of SERCA enzyme by inhibitor-thapsigargin, and (b) comparison of the kinetic parameters of SERCA activity between homogenates and isolated microsomes. Here we show that the apparent affinity of SERCA for Ca2+ and ATP, the time to reach steady-state levels of E-P, and the rate of E-P decomposition (turnover rate of SERCA enzyme) are similar in homogenates and microsomes. These studies demonstrate that SERCA Ca2+ transport and enzymatic properties can be accurately measured in mouse cardiac tissue homogenates. Additionally, we show that frozen cardiac homogenates can be used without significant loss of enzymatic activity. In conclusion, we have developed and established the methods to employ tissue homogenates to study SR Ca2+ transport function in individual mouse hearts.  相似文献   

    19.
    20.
    In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号