首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of CO2 reduction in the S-triazine-resistant biotype of smooth pigweed (Amaranthus hybridus L.) was lower at all levels of irradiance than the rate of CO2 reduction in the susceptible biotype. The intent of this study was to determine whether or not the lower rates of CO2 reduction are a direct consequence of the same factors which confer triazine resistance. The quantum yield of CO2 reduction was 23 ± 2% lower in the resistant biotype of pigweed and the resistant biotype of pigweed had about 25% fewer active photosystem II centers on both a chlorophyll and leaf area basis. This quantum inefficiency of the resistant biotype can be accounted for by a decrease in the equilibrium constant between the primary and secondary quinone acceptors of the photosystem II reaction centers which in turn would lead to a higher average level of reduced primary quinone acceptor in the resistant biotype. Thus, the photosystem II quantum inefficiency of the resistant biotype appears to be a direct consequence of those factors responsible for triazine resistance but a caveat to this conclusion is discussed. The effects of the quantum inefficiency of photosystem II on CO2 reduction should be overcome at high light and therefore cannot account for the lower light-saturated rate of CO2 reduction in the resistant biotype. Chloroplast lamellar membranes isolated from both triazine-resistant and triazine-susceptible pigweed support equivalent rates of whole chain electron transfer and these rates are sufficient to account for the rate of light-saturated CO2 reduction. This observation shows that the slower transfer of electrons from the primary to the secondary quinone acceptor of photosystem II, a trait which is characteristic of the resistant biotype, is nevertheless still more rapid than subsequent reactions of photosynthetic CO2 reduction. Thus, it appears that the lower rate of light-saturated CO2 reduction of the resistant biotype is not limited by electron transfer capacity and therefore is not a direct consequence of those factors which confer triazine resistance.  相似文献   

2.
Chloroplasts isolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L. were analyzed for lipid composition, ultrastructure, and relative quantum requirements of photosynthesis. In general, phospholipids, but not glycolipids in chloroplasts from the triazine-resistant biotype had a higher linolenic acid concentration and lower levels of oleic and linoleic fatty acids, than chloroplasts from triazine-susceptible plants. Chloroplasts from the triazine-resistant biotype had a 1.6-fold higher concentration of t-Δ3-hexadecenoic acid with a concomitantly lower palmitic acid concentration in phosphatidylglycerol. Phosphatidylglycerol previously has been hypothesized to be a boundary lipid for photosystem II. Chloroplasts from the triazine-resistant biotype had a lower chlorophyll a/b ratio and exhibited increased grana stacking. Light-saturation curves revealed that the relative quantum requirement for whole chain electron transport at limiting light intensities was lower for the susceptible biotype than for the triazine-resistant biotype. Although the level of the chlorophyll a/b light-harvesting complex associated with photosystem II was greater in resistant biotypes, the increased levels of the light-harvesting complex did not increase the photosynthetic efficiency enough to overcome the rate limitation that is inherited concomitantly with the modification of the Striazine binding site.  相似文献   

3.
Our understanding of the physiological mechanisms that allow marine photoautotrophs to thrive in a high light environment is limited. The pelagic phaeophyte, Sargassum natans (L.) Gaillon, exists at the air–sea interface and often is exposed to high irradiances. During a cruise in the Gulf of Mexico, aggregates of S. natans were collected and maintained in a shipboard incubator under natural sunlight. In vivo fluorescence and pigmentation dynamics were assessed over two daily cycles to characterize the photophysiological responses of this taxon to varying irradiance (i.e. overcast and sunny conditions). The relative proportion of the photosynthetic carotenoid, violaxanthin, to the photoprotective carotenoid, zeaxanthin, decreased during daylight hours. This mirrored the dynamics in the maximum quantum yield for stable charge separation at photosystem II (FV/FM[variable fluorescence/maximum fluorescence]), which decreased (relative to predawn levels) by 50%–60% during periods of sustained bright light and recovered to predawn values 3 h after sunset. The ratio of de-epoxidized to epoxidized components of the xanthophyll-cycle pigment pool (violaxanthin, zeaxanthin) was associated with energy dissipation activity within the pigment bed. The operational quantum yield for photosystem II activity (φIIe) was substantially lower than FV/FM due to both a decreased probability that absorbed photons reached open reaction centers and to the induction of nonphotochemical fluorescence quenching (which was rapidly reversible). Bright light also affected the rate of electron flow from the reaction center chlorophyll through to the secondary electron acceptor, quinone B (QB); specifically, single turnover decay curves indicated that the proportion of QB bound to the D1–D2 complex in photosystem II decreased during the protracted periods of bright light. Kautsky curves suggested that the relative proportion of inactive light-harvesting complexes also increased during periods of bright light. Taken together, these findings suggest that S. natans can tolerate high irradiances by down-regulating its quantum yield during the day, decreasing its functional absorption coefficient through the uncoupling of light-harvesting complexes, and decreasing the efficiency with which absorbed light is utilized. These cellular responses appear to be driven by the absolute flux of light and not by an endogenous rhythm, which is phased to a particular time of day.  相似文献   

4.
When CO2 is abruptly removed from the atmosphere surrounding an illuminated leaf, the primary electron-accepting plastoquinone of photosystem II (QA) (as measured by photochemical quenching, qp) is rapidly reduced and then, after some seconds, becomes more oxidized. The reoxidation of QA is accompanied by an increase in ΔpH (as measured by nonphotochemical quenching, qN) with kinetics consistent with a causal relationship. The fact that, in such circumstances, QA can become more oxidized in the absence of CO2 than in its presence indicates a diminished rate of reduction of QA, consequent upon impaired photosystem II efficacy. Dithiothreitol (DTT) feeding, which does not affect quantum yield or the maximum rate of photosynthesis, inhibits the reoxidation of QA but not the increase in the proton gradient. When leaves are reilluminated in high light following a dark interval of several minutes, DTT also abolishes the separation in time between the first maximum in qP and the first maximum in the rate of O2 evolution. It also diminishes subsequent oscillations. These results are held to demonstrate ΔpH control of photosystem II and are consistent with DTT inhibition of the xanthophyll cycle and hydrogen peroxide reduction. They support the concept that oxygen and hydrogen peroxide are involved, as Hill oxidants, in a pH-related manner, during oscillatory behavior.  相似文献   

5.
In leaves of an atrazine-resistant mutant ofSenecio vulgaris the quantum efficiency of CO2 assimilation was reduced by 21% compared to the atrazine-susceptible wild type, and at a light level twice that required to saturate photosynthesis in the wild type the CO2 fixation rate in the mutant was decreased by 15%. In leaves at steady-state photosynthesis there was a measurable increase in the reduction state of the photosystem II (PSII) primary quinone acceptor,Q A. Although this would lead to a decreased rate of PSII electron transport and may thus explain the decrease in quantum efficiency, this cannot account for the fall in the maximum rate of CO2 fixation. The atrazine-resistant mutant showed an appreciably longer photosynthetic induction time which indicates an effect on carbon metabolism; however, the response of CO2-fixation rate to intercellular CO2 concentration revealed no differences in carboxylation efficiency. There were also no differences in the ability to perform a State 1–State 2 transition between the atrazine-resistant and susceptible biotypes and no difference in the profiles of phosphorylated thylakoid polypeptides. It is concluded that the alteration of the redox equilibrium between PSII quinone electron acceptors in the atrazine-resistant biotype limits appreciably the photosynthetic efficiency in non-saturating light. Additionally, there is a further, as yet unidentified, limitation which decreases photosynthesis in the resistant mutant under light-saturating conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F max maximum fluorescence emission - F o2 minimal fluorescence emission upon exposure to saturating light flash - F v variable fluorescence emission - F v2 variable fluorescence emission upon exposure to saturating light flash - kDa kilodalton - PSI, II photosystems I, II - Q A primary quinone acceptor of PSH - Q B secondary quinone acceptor of PSII - RuBP ribulose-1,5-bisphosphate  相似文献   

6.
Photoinhibition was analyzed in O2-evolving and in Tris-treated PS II membrane fragments by measuring flash-induced absorption changes at 830 nm reflecting the transient P680+ formation and oxygen evolution. Irradiation by visible light affects the PS II electron transfer at two different sites: a) photoinhibition of site I eliminates the capability to perform a stable charge separation between P680+ and QA - within the reaction center (RC) and b) photoinhibition of site II blocks the electron transfer from YZ to P680+. The quantum yield of site I photoinhibition (2–3×10-7 inhibited RC/quantum) is independent of the functional integrity of the water oxidizing system. In contrast, the quantum yield of photoinhibition at site II depends strongly on the oxygen evolution capacity. In O2-evolving samples, the quantum yield of site II photoinhibition is about 10-7 inhibited RC/quantum. After selective elimination of the O2-evolving capacity by Tris-treatment, the quantum yield of photoinhibition at site II depends on the light intensity. At low intensity (<3 W/m2), the quantum yield is 10-4 inhibited RC/quantum (about 1000 times higher than in oxygen evolving samples). Based on these results it is inferred that the dominating deleterious effect of photoinhibition cannot be ascribed to an unique target site or a single mechanism because it depends on different experimental conditions (e.g., light intensity) and the functional status of the PS II complex.Abbreviations A830 absorption change at 830 nm - P680 primary electron donor of PS II - PS II photosystem II - Mes 2(N-morpholino)ethansulfonic acid - QA, QB primary and secondary acceptors of PS II - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbohydrazide - FWHM fullwidth at half maximum - Ph-p-BQ phenyl-p-benzoquinone - PFR photon fluence rate - Pheo pheophytin - RC reaction center  相似文献   

7.
During the period of senescence of desert plant Alhagi sparsifolia Shap. the maximum photochemical quantum yield measured as variable to maximum fluorescence ratio (Fv/Fm) remained relatively high, although the number of active reaction centres per cross section (RCs) decreased significantly. The efficiency of electron acceptors beyond the primary quinone acceptor (QA) decreased. The effect of temperature and irradiance on photosystem activity was maximum after 6 d. Our results suggest that: 1) the down-regulation of photosystem activity was due to the decline of both RCs and electron acceptance between plastoquinone (PQ) and cytochrome (cyt) b6/f; 2) photosystem activity presented negative correlation with daily mean temperature, and 3) reduction of daily sunshine period and increase of temperature at noon can stimulate the speed of senescence.  相似文献   

8.
The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA) is largely unaffected by Cu2+. The S2QB charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry.  相似文献   

9.
Photosynthetic energy conversion was investigated in five species of marine unicellular algae, (Dunaliella tertiolecta, Thalassiosira pseudonana, T. weisflogii, Skeletorema costatum, Isochrysis galbana) representing three phylogenetic classes, which were grown under steady state conditions with either light or inorganic nitrogen as a limiting factor. Using a pump and probe fluorescence technique we measured the maximum change in variable fluorescence yields, the flash intensity saturation curves for the change in fluorescence yields and the kinetics of the decay in fluorescence yields. Under all growth irradiance levels nutrient replete cells exhibited approximately the same changes in fluorescence yields and similar fluorescence decay kinetics. The apparent relative absorption cross-section of photosystem II, calculated from the slope of the flash intensity saturation curves, generally increased as cells shade adapted. The decay kinetics of the fluorescence yield following a saturating pump flash can be expressed as the sum of three exponential components, with half-times of 160 and 600 microseconds and 30 to 300 milliseconds. The relative contribution of each component did not change significantly with growth irradiance. As cells became more nitrogen limited, however, the maximum change in fluorescence yield decreased, and was accompanied by a decrease in the proportion of a 160 microsecond fluorescence decay component, which corresponds to the transfer of electrons from Qa to Qb. Changes in fluorescence yields were also accompanied by changes in the levels of D1, a protein which is integral in reaction center II, and CP47, a chlorophyll protein forming part of the core of photosystem II. These results are consistent with a loss of functional photosystem II reaction centers. Moreover, in spite of losses of total cellular chlorophyll, which invariably accompanied nitrogen limitation, the apparent absorption cross-sections of photosystem II increased. Our results suggest that nitrogen limitation leads to substantial decreases in photosynthetic energy conversion efficiency.  相似文献   

10.
Exposure of tomato plants (Lycopersicon esculentum Mill. cv. Floramerica) to chilling temperatures in the dark for as little as 12 h resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, when photosynthesis was measured at low light intensity, the inhibition disappeared and the quantum yield of CO2 reduction was diminished only slightly. Chilling the tomato plants under strong illumination caused an even more rapid and severe decline in the rate of light- and CO2-saturated photosynthesis, accompanied by a large decline in the quantum efficiency. Sizeable inhibition of photosystem II activity was observed only after dark exposures to low temperature of grater than 16 h. No inhibition of photosystem I electron transfer capacity was observed even after 40 h of dark chilling. Chilling under high light resulted in a rapid decline in both photosystem I and photosystem II electron transfer capacity as well as in significant reaction center inactivation.Regardless of whether the chilling exposure was in the presence or absence of illumination and regardless of its duration, the electron transfer capacity of thylakoid membranes isolated from the treated plants was always in excess of that necessary to support light- and CO2-saturated photosynthesis. Thus, in neither case of chilling inhibition of photosynthesis does it appear that impaired electron transfer capacity represents a significant rate limitation to whole plant photosynthesis.Abbreviations BSA bovine serum albumin - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - DHQ duroquinol - EDTA ethylene-diamine-tetraacetic acid - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - MES 2-(N-Morpholino)ethanesulfonic acid - MV methylviologen - PS I & II photosystems I and II - PDOX p-phenylenediimine (oxidized) - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

11.
Photoinhibition of photosynthesis is manifested at the level of the leaf as a loss of CO2 fixation and at the level of the chloroplast thylakoid membrane as a loss of photosystem II electron-transport capacity. At the photosystem II level, photoinhibition is manifested by a lowered chlorophyll a variable fluorescence yield, by a lowered amplitude of the light-induced absorbance change at 320 nm (A320) and 540-minus-550 nm (A540–550), attributed to inhibition of the photoreduction of the primary plastoquinone QA molecule. A correlation of the kinetics of variable fluorescence yield loss with the inhibition of QA photoreduction suggested that photoinhibited reaction centers are incapable of generating a stable charge separation but are highly efficient in the trapping and non-photochemical dissipation of absorbed light. The direct effect of photoinhibition on primary photochemical parameters of photosystem II suggested a permanent reaction center modification the nature of which remains to be determined.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

12.
Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange () and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.Abbreviations Fo instantaneous yield of chlorophyll fluorescence - Fm maximum yield of fluorescence - Fv variable yield (Fm–Fo) of fluorescence - PFD photon flux density (400–700 nm) - Pm light-saturated rate of photosynthesis - PSH photosystem II - QA electron acceptor of PSII - light-limited quantum yield of photosynthesis  相似文献   

13.
Experiments were conducted to investigate the photosynthetic activity and thermostability of photosystem II (PSII) in elm seedling (Ulmus pumila) leaves from initiation to full expansion. During leaf development, photosynthesis, measured as CO2 fixation, increased gradually and reached a maximum value when leaves were fully developed. In parallel with the increase of carbon assimilation, chlorophyll content increased. The chlorophyll a fluorescence measurements showed that the maximum quantum yield of PSII primary photochemistry (φpo), the efficiency with which the energy of trapped excitons is converted into the electron transport beyond QA (Ψo) and the quantum yield of electron transport beyond QA (φEo) increased gradually. The low light experiments confirmed these results independently. When subjected to heat stress, young leaves exhibited progressively lower φpo and maximal fluorescence (Fm) values with considerably higher minimal fluorescence (Fo) than mature leaves, demonstrating that PSII in newly initiating leaves is more sensitive to heat stress. Further analysis revealed that PSII structure in newly initiating leaves showed a robust alteration under heat stress, which was reflected by the clear K phase in the OJIP curves. Therefore, we suggest that the enhanced thermostability of PSII in the case of leaf growth might be associated with an improvement of the stability of the oxygen-evolving complex (OEC) to heat stress during leaf development.  相似文献   

14.
Studies were conducted to determine a physiological basis for competitive differences between Senecio vulgaris L. biotypes which are either resistant or susceptible to triazine herbicides. Net carbon fixation of intact leaves of mature plants was higher at all light intensities in the susceptible biotype than in the resistant biotype. Quantum yields measured under identical conditions for each biotype were 20% lower in the resistant than in the susceptible biotype. Oxygen evolution in continuous light measured in stroma-free chloroplasts was also higher at all light intensities in the susceptible biotype than in the resistant biotype. Oxygen evolution in response to flashing light was measured in stroma-free chloroplasts of both biotypes. The steady-state yield per flash of resistant chloroplasts was less than 20% that of susceptible chloroplasts. Susceptible chloroplasts displayed oscillations in oxygen yield per flash typically observed in normal chloroplasts, whereas the pattern of oscillations in resistant chloroplasts was noticeably damped. It is suggested that modification of the herbicide binding site which confers s-triazine resistance may also affect the oxidizing side of photosystem II, making photochemical electron transport much less efficient. This alteration has resulted in a lowered capacity for net carbon fixation and lower quantum yields in whole plants of the resistant type.  相似文献   

15.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

16.
Photosynthetic activities and the redox states of photosystem I (PSI) and photosystem II (PSII) in intact leaves of cucumber plants (Cucumis sativus L.), as well as the sucrose and starch contents were examined under conditions of ongoing soil water deficit imposed by the cessation of watering. As the soil drought progressed, the maximum rate of photosynthetic CO2 fixation was shown to decrease. These changes in the maximum photosynthetic rate occurred synchronously with changes in the maximum quantum yield of photosynthesis. Under soil water deficit, the reduced form of PSII primary acceptor Q A was accumulated only at photon flux densities of about 100 mol/(m2 s). At such photon flux densities, the changes in nonphotochemical quenching (qN) induced by soil water deficit were opposite to changes in photochemical quenching parameter (1 – qP). Irrespective of the duration of soil drought, the relationship between steady-state concentrations of photochemically inactive reaction centers of PSI and PSII (the fractions of P700 and Q A in the oxidized and reduced state, respectively) was almost linear, which provides evidence for the concerted operation of both photosystems. The conditions of soil water deficit promoted sucrose accumulation in the source leaf, which was paralleled by a substantial decrease in the amount of starch in the same leaf. The highest content of sucrose in the leaf after a 7-day drought was correlated with the largest decrease in photosynthetic activity. It is concluded that the progressive drought triggers an endogenous mechanism that regulates photosynthesis through feedback relations, namely, the inhibition of photosynthesis by its end products.  相似文献   

17.
18.
The flash-induced electrochromic shift, measured by the amplitude of the rapid absorbance increase at 518 nanometers (ΔA518), was used to determine the amount of charge separation within photosystems II and I in spinach (Spinacia oleracea L.) leaves. The recovery time of the reaction centers was determined by comparing the amplitudes of ΔA518 induced by two flashes separated by a variable time interval. The recovery of the ΔA518 on the second flash revealed that 20% of the reaction centers exhibited a recovery half-time of 1.7 ± 0.3 seconds, which is 1000 times slower than normally active reaction centers. Measurements using isolated thylakoid membranes showed that photosystem I constituted 38% of the total number of reaction centers, and that the photosystem I reaction centers were nearly fully active, indicating that the slowly turning over reaction centers were due solely to photosystem II. The results demonstrate that in spinach leaves approximately 32% of the photosystem II complexes are effectively inactive, in that their contribution to energy conversion is negligible. Additional evidence for inactive photosystem II complexes in spinach leaves was provided by fluorescence induction measurements, used to monitor the oxidation kinetics of the primary quinone acceptor of photosystem II, QA, after a short flash. The measurements showed that in a fraction of the photosystem II complexes the oxidation of QA was slow, displaying a half-time of 1.5 ± 0.3 seconds. The kinetics of QA oxidation were virtually identical to the kinetics of the recovery of photosystem II determined from the electrochromic shift. The key difference between active and inactive photosystem II centers is that in the inactive centers the oxidation rate of QA is slow compared to active centers. Measurements of the electrochromic shift in detached leaves from several different species of plants revealed a significant fraction of slowly turning over reaction centers, raising the possibility that reaction centers that are inefficient in energy conversion may be a common feature in plants.  相似文献   

19.
Martin B  Ort DR 《Plant physiology》1982,70(3):689-694
Chilling tomato plants (Lycopersicon esculentum Mill. cv. Rutgers and cv. Floramerica) in the dark resulted in a sizable inhibition in the rate of light- and CO2-saturated photosynthesis. However, at low light intensity, the inhibition disappeared and the absolute quantum yield of CO2 reduction was diminished only slightly. The quantum yield of photosystem II (PSII) electron flow was 18% lower when measured in chloroplasts isolated from chilled leaves than in chloroplasts isolated from unchilled leaves. Even though the maximum rate of PSII turnover in these chloroplasts was 12% lower subsequent to chilling, it was in all cases two or more times that required to support the light- and CO2-saturated rate of photosynthesis measured in the attached leaf. The concentration of active PSII centers in chloroplasts isolated from leaves either before or after chilling was determined by measurement of the products of water oxidation from a series of saturating flashes short enough to turnover the electron transport carriers only a single time. There was no significant change in the concentration of active PSII centers due to dark chilling.

It was concluded that PSII activity and water oxidation capacity are not significantly impaired in tomato by chilling in the dark and therefore are not primary aspects of the inhibition of CO2 reduction observed in attached leaves.

  相似文献   

20.
Chlorophyll a fluorescence is a non-invasive tool widely used in photosynthesis research. According to the dominant interpretation, based on the model proposed by Duysens and Sweers (1963, Special Issue of Plant and Cell Physiology, pp 353–372), the fluorescence changes reflect primarily changes in the redox state of QA, the primary quinone electron acceptor of photosystem II (PSII). While it is clearly successful in monitoring the photochemical activity of PSII, a number of important observations cannot be explained within the framework of this simple model. Alternative interpretations have been proposed but were not supported satisfactorily by experimental data. In this review we concentrate on the processes determining the fluorescence rise on a dark-to-light transition and critically analyze the experimental data and the existing models. Recent experiments have provided additional evidence for the involvement of a second process influencing the fluorescence rise once QA is reduced. These observations are best explained by a light-induced conformational change, the focal point of our review. We also want to emphasize that—based on the presently available experimental findings—conclusions on α/ß-centers, PSII connectivity, and the assignment of FV/FM to the maximum PSII quantum yield may require critical re-evaluations. At the same time, it has to be emphasized that for a deeper understanding of the underlying physical mechanism(s) systematic studies on light-induced changes in the structure and reaction kinetics of the PSII reaction center are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号