首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was carried out to determine a suitable light intensity and inoculum size for the growth ofRhodopseudomonas palustris strain B1. The pollution reduction of sago effluent using free and immobilisedR. palustris cells was also evaluated. The growth rate in glutamatemalate medium was highest at 4 klux compared to 2.5 and 3 klux. The optimal inoculum size was 10% (v/v). Both the COD and BOD of the sago effluent were reduced by 67% after three days of treatment. The difference in biomass production or BOD and COD removal with higher inoculum sizes of 15 and 20% was minimal. This could be attributed to limited nutrient availabillity in the substrate. The use of immobilised cells ofR. palustris reduced the pollution load 10% less compared to pollution reduction by free cells. Hence, there was no significant difference in using free or immobilised cells for the treatment of sago effluent.  相似文献   

2.
Pseudomonas aeruginosa cells capable of destroying alkyl sulfates, anionic surfactants, were immobilised on activated polyvinyl alcohol fibres. The immobilised cells could decompose SDS. When the immobilised cells were used repeatedly, their biomass increased but the activity hardly changed.  相似文献   

3.
Pseudomonas fluorescens isolated from soil samples contaminated with molasses, decolourised molasses wastewater (MWW) samples up to 76% under non-sterile conditions in four days at 30 degrees C. Immobilised cells could be reused for decolourisation activity. However, in subsequent cycles, this was found to decrease from 76% to 50% and from 50% to 24%. Decolourisation activity was regenerated from 30% to 45% by recultivating the immobilised cells in a fresh growth medium. Cellulose carrier coated with collagen was found to be most effective carrier, which produced the highest decolourisation activity of 94% in a 4-day process. This carrier could be reused with 50% of the decolourisation activity retained until the seventh day.  相似文献   

4.
A new microbial isolate, Pseudomonas 2HS, produced trace amounts of a greenish-yellow pigment when grown aerobically in a 1% yeast extract medium at 30 degrees C and shaken at 250 rpm for 5 days. In contrast, cells produced more greenish-yellow pigment (2.16 mg/15 ml culture) when grown in the presence of 0.5% 12-hydroxyoctadecanoic acid (w/v). The greenish-yellow pigment was identified as phenazine-1-carboxylic acid (tubermycin B), and the Pseudomonas 2HS was identified as P. aeruginosa 2HS. This is the first report that 12-hydroxyoctadecanoic, ricinoleic and other fatty acids can enhance the production of phenazine-1-carboxylic acid by a Pseudomonas species.  相似文献   

5.
Arylsulfatase was released almost completely from intact cells of Pseudomonas C12B after osmotic shock or after treatment with lysozyme. These results suggest that the enzyme is cell wall associated in this soil isolate.  相似文献   

6.
Arylsulfatase was released almost completely from intact cells of Pseudomonas C12B after osmotic shock or after treatment with lysozyme. These results suggest that the enzyme is cell wall associated in this soil isolate.  相似文献   

7.
Abstract A biphasic increase in surface hydrophobicity of the surfactant-biodegrading bacterium Pseudomonas C12B has been correlated with biodegradation of the primary alkyl sulphate, sodium dodecyl sulphate. Using both hydrophobic interaction chromatography and microbial adhesion to hydrocarbon to measure surface hydrophobicity, it was shown that the first phase coincides with production of the primary metabolite dodecan-1-ol. The direct addition of dodecan-1-ol to Pseudomonas C12B resulted in the instantaneous increase in surface hydrophobicity, with a subsequent decrease which coincided with dodecan-1-ol biodegradation. In contrast, incubation of Pseudomonas C12B with sodium dodecane sulphonate, a non-metabolizable surfactant analogue of SDS, or the growth-supporting carbon source sodium pyruvate did not alter the surface hydrophobicity. These data are interpreted in terms of a model in which the hydrophobic metabolite dodecan-1-ol enters the bacterial membranes, thus increasing surface hydrophobicity and that these surfactant-biodegradation-dependent changes in bacterial surface hydrophobicity are correlated with reversible attachment of the bacteria to sediment surfaces.  相似文献   

8.
Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of bacteria-degrading bacteria were isolated from longterm petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa W3 were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.  相似文献   

9.
Recently isolated Cr(VI)-reducing Amphibacillus KSUCr3 whole cells were immobilised in magnetic gels. Magnetic magnetite (Fe3O4) nanoparticles were synthesised with an average particle size of 47 nm and 80 electromagnetic unit (emu)/g saturation magnetisation. Whole cells were immobilised by entrapment in agar, agarose, alginate, or gelatin in the presence or absence of Fe3O4 nanoparticles for the preparation of both magnetic and nonmagnetic immobilised cells. Of the gels tested, alginate was selected as the best immobilisation matrix, and following optimisation of the entrapment process, the immobilisation yield reached 92.5%. In addition to the ease of separation and reuse of the magnetic cell-containing alginate beads using an external magnet, the magnetically immobilised cells showed approximately 16% higher Cr(VI) reduction activity compared with nonmagnetic immobilised cells. To improve their physical and mechanical properties, the magnetic alginate beads were successfully coated with a dense silica layer using sol-gel chemistry and Ca(OH)2, an alkaline catalyst for tetraethyl orthosilicate, to avoid leaching of Ca2+ ions. Amphibacillus KSUCr3 cells immobilised in silica-coated magnetic alginate beads showed approximately 1.4- to 3.9-fold enhancement of thermal stability compared with free cells. Furthermore, after seven batch cycles, the Cr(VI) reduction activity of free cells decreased to 48%, whereas immobilised cells still retained 81.1% of their original activity. In addition, the Cr(VI)-reduction rate of immobilised cells was higher relative to free cells, especially at higher Cr(VI) concentrations. These results supported the development of a novel, efficient biocatalysts for Cr(VI) detoxification using a combination of whole cell immobilisation, sol-gel chemistry, and nanotechnology.  相似文献   

10.
The production of the β-lactam antibiotic, Cephalosporin-C in a packed bed bioreactor was studied using Cephalosporium acremonium immobilised in calcium alginate, bagasse, and silk sachets. The specific β-lactam antibiotic production rate of immobilised cells was about 120%, 125% and 133% at 100 h (free cells 100%) for calcium alginate, bagasse and silk sachets, respectively. A cells-to-carrier ratio of 3:2 was found to be optimum throughout these studies. The effect of recycle ratio indicated diffusion barriers to substrate transport.  相似文献   

11.
Pseudomonas C(12)B and other Pseudomonas species released larger amounts of a (35)S-labelled metabolite into the medium when cultured on growth-limiting concentrations of Na(2)SO(4) as opposed to growth in SO(4) (2-)-sufficient media. The metabolite was found at all stages of the culture cycle of Pseudomonas C(12)B and maximum quantities occurred in stationary-phase culture supernatants. The metabolite was not detected when the bacterium was cultured on growth-limiting concentrations of potassium phosphate. The amount of the metabolite present in the medium greatly exceeded that which could be extracted from intact cells and, except for choline chloride, it was independent of the carbon source used for growth. If choline chloride was present in high concentration, then larger amounts of the metabolite were found in the culture medium. The metabolite was not detected extracellularly or intracellularly when the bacterium was grown in SO(4) (2-)-deficient media containing 5mm-l-cysteine. The same metabolite was also synthesized in vitro only when Pseudomonas C(12)B extracts were incubated with choline chloride, ATP, MgCl(2) and Na(2) (35)SO(4). The metabolite-forming system was not subject to repression by Na(2)SO(4) and was completely inhibited by 0.5mm-l-cysteine and activated by Na(2)SO(4) (up to 1.0mm). The metabolite was identified as choline O-sulphate by electrophoresis, chromatography and isotope-dilution analysis. Another (35)S-labelled metabolite was also detected in culture supernatants, but was not identified.  相似文献   

12.
Summary Cells of a Daucus carota suspension culture were entrapped in a matrix of calcium alginate. The immobilised cells, incubated in a buffer mixture of sucrose, nitrate, KCl, CaCl2, 2-(N-morpholino)-ethane sulphonic acid at pH 5.5, hydroxylated digitoxigenin. When compared under the same incubation conditions, freely suspended cells biotransformed digitoxigenin at a faster rate. Periplogenin formation was maximal at pH 5.3 and temperatures of 26°–34°C. The hydroxylase activity of the entrapped cells adapted to the presence of 20 mM CaCl2 over a 12 day incubation. The diffusion barrier established on entrapment of the cells could not be overcome by addition of detergents or methanol. Controlled addition of chloroform (at 1/4 and 1/2 saturation) did stimulate hydroxylation of digitoxigenin without adversely affecting cell viability. The rate of hydroxylation of digitoxigenin was linear over an immobilised cell concentration of 0–7 mg dry weight and a digitoxigenin concentration of 0–20 mg/L. Five consecutive batch bioconversions at a rate greater than 60% could be achieved before the biocatalyst was inactivated. The results are discussed in relation to improving the hydroxylation reaction by immobilised D. carota and other reactions performed by immobilised plant cells.  相似文献   

13.
The fatty acid composition of lipid A was studied using gas-liquid chromatography (GLC) and GLC-mass spectrometry in Pseudomonas fluorescens strains of biovars A, B, C, i, F and G, the type strain ATCC 13525 (biovar A) inclusive. The following fatty acids were identified as predominant in the composition of lipid A in the strains representing biovars A, B, C, i, F and G: 3-hydroxydecanoic (3-OH C10:0), 2-hydroxydodecanoic (2-OH C12:0), 3-hydroxydodecanoic (3-OH C12:0), dodecanoic (C12:0), hexadecanoic (C16:0), octadecanoic (C18:0), hexadecenoic (C16:1) and octadecenoic (C18:1) acids. Lipid A of a biovar G strain differed noticeably from other strains in its fatty acid composition. Its main components were as follows: 3-hydroxytetradecanoic (3-OH C14:0), 3-hydroxypentadecanoic (3-OH C15:0) and dodecanoic (C12:0) fatty acids. The coefficients of similarity were determined for lipid A specimens isolated from the studied strains of P. fluorescens by calculating their fatty acid composition with a computer.  相似文献   

14.
The kinetics of malolactic fermentation in Chardonnay wine by immobilised Lactobacillus casei cells has been studied. Calcium pectate gel and chemically modified chitosan beads were used as supports for immobilisation. Repeated batch fermentations were carried out with different wine samples, some of which were treated with sulfur dioxide (free 19–25 mg/litre and total 80–88 mg/litre), in shake flask at 36, 25 and 20°C without any loss of activity. The degradation of malic acid obtained using immobilised cells was twice as high as that obtained with free cells. At an initial pH 3·2, decrease of malic acid of about 30% was observed at 25°C in one hour using L. casei cells immobilised either in pectate gel or on chitosan. Among the physico-chemical parameters studied, temperature was the main factor affecting metabolism of the organic acids as well as the rate of the malolactic fermentation. Operational stability of calcium pectate gel beads and chemically modified chitosan beads was 6 months after eight fermentations and 2 months after five fermentations, respectively, which proved the possibility of industrial application of the chosen supports in wine making.  相似文献   

15.
Oleic acid alkyl esters (biodiesel) were synthesised by biocatalysis in solvent-free conditions. Different commercial immobilised lipases, namely Candida antarctica B, Rizhomucor miehei, and Pseudomonas cepacia, were tested towards the reaction between triolein and butanol to produce butyl oleate. Pseudomonas cepacia lipase resulted to be the most active enzyme reaching 100% of conversion after 6h. Different operative conditions such as reaction temperature, water activity, and reagent stoichiometric ratio were investigated and optimised. These conditions were then used to investigate the effect of linear and branched short chain alcohols. Methanol and 2-butanol were the worst alcohols: the former, probably, due to its low miscibility with the oil and the latter because secondary alcohols usually are less reactive than primary alcohols. Conversely, linear and branched primary alcohols with short alkyl chains (C(2)--C(4)) showed high reaction rate and conversion. A mixture of linear and branched short chain alcohols that mimics the residual of ethanol distillation (fusel oil) was successfully used for oleic acid ester synthesis. These compounds are important in biodiesel mixtures since they improve low temperature properties.  相似文献   

16.
A marine bacterium, Pseudomonas aeruginosa BYK-2 (KCTC 18012P), was immobilised by entrapment in 10% (w/v) polyvinyl alcohol beads and optimized for the continuous production of rhamnolipid. The relative activity of rhamnolipid production was maintained at 80 approximately 90% of the initial production during 15 cycles in a repeated batch culture. Continuous culture was performed in a 1.8 1 airlift bioreactor, yielding 0.1 g rhamnolipid h(-1) at a dilution rate of 0.0 18 h(-1), 25 degrees C, initial pH 7, and 0.5 vvm aeration rate with a 1.21 working volume.  相似文献   

17.
Solubilization of fish proteins using immobilized microbial cells   总被引:3,自引:0,他引:3  
Cells of Bacillus megaterium, Aeromonas hydrophila, and Pseudomonas marinoglutinosa were immobilized in calcium alginate. The immobilized cells secreted protease when held in fish meat suspension in water. The enzyme synthesis by the entrapped cells was supported by small amounts of soluble nutrients present in the meat. The secreted protease solubilized the fish meat, solubilization being optimum at pH range of 7.5 to 9.5 and at 50 degrees C. Under these conditions immobilized B. megaterium was most efficient giving 30% solubilization of the meat, followed by A. hydrophila (18%), while immobilized P. marinoglutinosa was less effective. The optimum ratio of fish meat to beads was about 4:3 for B. megaterium and A. hydrophila. The beads had a storage life of 30 days at 4 degrees C. The results suggested potential for use of immobilized microbial cells having extracellular protease activity to enhance solubility of waste proteins. A prototype reactor with beads holding assembly was fabricated which could recover the beads from the meat slurry after the treatment.  相似文献   

18.
We demonstrate that dynamic secondary ion mass spectrometry (SIMS)-based ion microscopy can provide a means of measuring (13)C assimilation into individual bacterial cells grown on (13)C-labelled organic compounds in the laboratory and in field soil. We grew pure cultures of Pseudomonas putida NCIB 9816-4 in minimal media with known mixtures of (12)C- and (13)C-glucose and analysed individual cells via SIMS imaging. Individual cells yielded signals of masses 12, 13, 24, 25, 26 and 27 as negative secondary ions indicating the presence of (12)C(-), (13)C(-), (24)((12)C(2))(-), (25)((12)C(13)C)(-), (26)((12)C(14)N)(-) and (27)((13)C(14)N)(-) ions respectively. We verified that ratios of signals taken from the same cells only changed minimally during a approximately 4.5 min period of primary O(2)(+) beam sputtering by the dynamic SIMS instrument in microscope detection mode. There was a clear relationship between mass 27 and mass 26 signals in Pseudomonas putida cells grown in media containing varying proportions of (12)C- to (13)C-glucose: a standard curve was generated to predict (13)C-enrichment in unknown samples. We then used two strains of Pseudomonas putida able to grow on either all or only a part of a mixture of (13)C-labelled and unlabelled carbon sources to verify that differential (13)C signals measured by SIMS were due to (13)C assimilation into cell biomass. Finally, we made three key observations after applying SIMS ion microscopy to soil samples from a field experiment receiving (12)C- or (13)C-phenol: (i) cells enriched in (13)C were heterogeneously distributed among soil populations; (ii) (13)C-labelled cells were detected in soil that was dosed a single time with (13)C-phenol; and (iii) in soil that received 12 doses of (13)C-phenol, 27% of the cells in the total community were more than 90% (13)C-labelled.  相似文献   

19.
A lipopolysaccharide was isolated from Pseudomonas aurantiaca IMB 31 by extraction with aqueous phenol and purified by ultracentrifugation. The lipopolysaccharide was confined to the phenol phase. Fucosamine (2-amino-2,6-dideoxygalactose) (36%) and bacillosamine (2,4-diamino-3,4,6-trideoxyglucose) (23%) were identified as hypothetic components of the O-chain in the carbohydrate moiety of the macromolecule using the techniques of paper chromatography, gas-liquid chromatography and ion-exchange chromatography on an amino acid analyser. Rhamnose, glucose, galactose, glucosamine and galactosamine were detected as hypothetical components of the core in the lipopolysaccharide composition, as well as 2-keto-3-deoxyoctonic acid, heptose, alpha-alanine and phosphorus, usual components of the core in Pseudomonas. The following predominant fatty acids were identified in the composition of lipid A using the techniques of gas-liquid chromatography with standard compounds and gas-liquid mass spectrometry: 3-OH C10:0 (14.4%), C12:0 (30.5%), 2-OH C12:0 (14.9%), 3-OH C12:0 (17.4%), C16:0 (9.9%). The serological relationship between P. aurantiaca strains was studied, and their phylogenetic relationship with P. fluorescens is discussed.  相似文献   

20.
Factor B is a key component of the alternative pathway of the complement system. During complement activation, factor B complexed with activated C3 is cleaved into the Ba and Bb fragments by the protease factor D to form the C3 convertase from the complex between C3b and Bb. The Ba fragment contains three short consensus/complement repeat (SCR) domains, and the Bb fragment contains a von Willebrand factor type A (vWF-A) domain and a serine protease (SP) domain. Surface-enhanced laser desorption-ionization affinity mass spectrometry (SELDIAMS) was used to investigate the reaction of factor B with immobilised activated C3(NH3) in the presence of Mg(2+). A recombinant vWF-A domain (residues G229-Q448), the native Ba and Bb fragments and native factor B all demonstrated specific interactions with C3(NH3), while no interactions were detected using bovine serum albumin as a control. A mass analysis of the proteolysis of the vWF-A domain when this was bound to immobilised C3(NH3) identified two peptides (residues G229-K265 and T355-R381) that were involved with vWF-A binding to C3(NH3). A homology model for the vWF-A domain was constructed using the vWF-A crystal structure in complement receptor type 3. Comparisons with five different vWF-A crystal structures showed that large surface insertions were present close to the carboxyl and amino edges of the central beta-sheet of the factor B vWF-A structure. The peptides G229-K265 and T355-R381 corresponded to the two sides of the active site cleft at the carboxyl edge of the vWF-A structure. The vWF-A connections with the SCR and SP domains were close to the amino edge of this vWF-A beta-sheet, and shows that the vWF-A domain can be involved in both C3b binding and the regulation of factor B activity. These results show that (i) a major function of the vWF-A domain is to bind to activated C3 during the formation of the C3 convertase, which it does at its active site cleft; and that (ii) SELDIAMS provides an efficient means of identifying residues involved in protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号