首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous hisone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation)_or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. Since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

2.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous histone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation) or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

3.
Conditions are described for the preparation of permeabilized cells of Candida albicans. This method has been used for the in situ assay of enzymes in both yeast cells and germ-tube forming cells. A mixture of toluene/ethanol/Triton X-100 (1:4:0.2, by vol.) at 15% (v/v) and 8% (v/v) was optimal for the in situ assay of glucose-6-phosphate dehydrogenase in yeast and germ-tube forming cells, respectively. The concentration of toluene/ethanol/Triton X-100 required for optimal in situ activity of other enzymes was influenced by the cellular location of the enzyme, growth phase and morphology. The membrane-bound enzymes (chitin synthase, glucan synthase, ATPase), cytosolic enzymes (glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, pyruvate kinase, phosphofructokinase, alkaline phosphatase, glucosamine-6-phosphate deaminase and N-acetylglucosamine kinase) and wall enzymes (beta-glucosidase and acid phosphatase) were measured and compared to the activity obtained in cell extracts. The pattern of enzyme induction and the properties of the allosteric enzymes phosphofructokinase and pyruvate kinase were measured in situ. Pyruvate kinase in situ was homotropic for phosphoenolpyruvate with a Hill coefficient of 1.9 and a S0.5 of 0.6 mM, whereas in cell extracts, it had a Hill coefficient of 1.9 and a S0.5 of 1.0 mM. The Km for ATP was 1.6 mM in cell extracts and 1.8 mM in permeabilized cells. In situ phosphofructokinase was homotropic for fructose 6-phosphate (S0.5 of 2.3 mM, Hill coefficient of 4.0). The kinetic properties of pyruvate kinase and phosphofructokinase measured in situ or in vitro were similar for both yeast cells and germ-tube forming cells.  相似文献   

4.
To investigate the modulation of phosphatidylinositol 4-phosphate kinase activity by the degree of phosphorylation of the B-50 protein, the enzyme was purified from rat brain cytosol by ammonium sulphate precipitation and DEAE-cellulose column chromatography. Purified rat brain B-50 was phosphorylated with protein kinase C and dephosphorylated with alkaline phosphatase. Incubation of the semi-purified phosphatidylinositol 4-phosphate kinase with 1 microgram of the B-50 preparation enriched in the dephospho-form, resulted in a small reduction of phosphatidylinositol 4-phosphate kinase activity (-16%), whereas incubation with the phospho B-50 preparation inhibited the enzyme activity by 40%. The effect of exogenous B-50 was studied in the presence of 10 micrograms albumin to minimize aspecific protein-protein interactions. The present data on the effect of exogenous B-50 protein on phosphatidylinositol 4-phosphate kinase activity, further support our hypothesis that the phosphorylation state of B-50 may be a regulatory factor in phosphoinositide metabolism in rat brain.  相似文献   

5.
Total trehalose 6-phosphate synthase activity increased in cell-free extracts from Candida utilis following short-term preincubation of the enzyme samples at 37 degrees C. This endogenous activation was prevented by the inhibitors of serine-type proteases, phenylmethylsulfonyl fluoride, antipain or chymostatin, but not by other protease inhibitors such as pepstatin. Fractionation of the cell extracts by Sephadex G-200 gel filtration revealed that the activity of one of the two synthase enzymes present in these cells was enhanced after the activation treatment. These observations indicate the existence of a proteolytically activatable enzyme form in the trehalose 6-phosphate synthase complex of this yeast in addition to the previously characterized enzyme, whose activity appears to be inactivated by reversible phosphorylation.  相似文献   

6.
Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.  相似文献   

7.
Summary Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation.Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.%GSI represents the percentage of glycogen synthase activity that is active without glucose 6-P.  相似文献   

8.
Shima S  Matsui H  Tahara S  Imai R 《The FEBS journal》2007,274(5):1192-1201
Substantial levels of trehalose accumulate in bacteria, fungi, and invertebrates, where it serves as a storage carbohydrate or as a protectant against environmental stresses. In higher plants, trehalose is detected at fairly low levels; therefore, a regulatory or signaling function has been proposed for this molecule. In many organisms, trehalose-6-phosphate phosphatase is the enzyme governing the final step of trehalose biosynthesis. Here we report that OsTPP1 and OsTPP2 are the two major trehalose-6-phosphate phosphatase genes expressed in vegetative tissues of rice. Similar to results obtained from our previous OsTPP1 study, complementation analysis of a yeast trehalose-6-phosphate phosphatase mutant and activity measurement of the recombinant protein demonstrated that OsTPP2 encodes a functional trehalose-6-phosphate phosphatase enzyme. OsTPP2 expression is transiently induced in response to chilling and other abiotic stresses. Enzymatic characterization of recombinant OsTPP1 and OsTPP2 revealed stringent substrate specificity for trehalose 6-phosphate and about 10 times lower K(m) values for trehalose 6-phosphate as compared with trehalose-6-phosphate phosphatase enzymes from microorganisms. OsTPP1 and OsTPP2 also clearly contrasted with microbial enzymes, in that they are generally unstable, almost completely losing activity when subjected to heat treatment at 50 degrees C for 4 min. These characteristics of rice trehalose-6-phosphate phosphatase enzymes are consistent with very low cellular substrate concentration and tightly regulated gene expression. These data also support a plant-specific function of trehalose biosynthesis in response to environmental stresses.  相似文献   

9.
Trehalose-6-phosphate phosphatase is an enzyme strictly essential for the growth of mycobacteria. Subcellular fractionation of Mycobacterium tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) located the trehalose-6-phosphate phosphatase in the cell wall and membrane fractions. Trehalose-6-phosphate phosphatase induced an increased Th1-type immune response in mice, characterized by an elevated level of interferon-gamma in antigen-stimulated splenocyte culture and a strong IgG2a antibody response. The trehalose-6-phosphate phosphatase was recognized by the sera of tuberculosis patients and BCG-vaccinated donors. The mycobacterial trehalose-6-phosphate phosphatase is an immunodominant antigen, and it may be a candidate for vaccine development for the control of tuberculosis.  相似文献   

10.
Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation. Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.  相似文献   

11.
A 2.5 kb DNA fragment contain a gene encoding a phospho-α-(1–1)-glucosidase (phosphotrehalase), designated treA, was isolated from a Bacillus subtilis chromosomal library by complementation of the tre-12 mutation. The major TreA activity was found in the cytoplasm. TreA exhibits high sequence similarity to thermostable oligo 1,6 β-glucosidases of several species and the trehalose-6-phosphate hydrolase TreC of Escherichia coli. TreA activity is induced by trehalose and repressed by glucose, fructose or mannitol. Induction by trehalose and repression by glucose are concentration dependent. The highest activity of TreA occurs 90min before the end of the exponential growth phase in crude cell extracts. The enzyme is able to cleave para-nitrophenyl-glucopyranoside and trehalose-6-phosphate but not trehalose. These results indicate that treA encodes a specific phospho-α-(1–1)-giucosidase which cleaves trehalose-6-phosphate in the cytoplasm after transport and phosphorylation of trehalose. The 5′ flanking region of treA contains an open reading frame which was partially sequenced, whose product shows about 40% identity to sucrose Enzyme II of the phospho-transferase transport system from several organisms.  相似文献   

12.
Trehalose-6-phosphate synthase is the key enzyme for biosynthesis of trehalose, the major soluble carbohydrate in resting cells of yeast. This enzyme was purified from a strain of Saccharomyces cerevisiae lacking vacuolar proteases. It was found to be a multimeric protein of 630 kDa. Monoclonal antibodies were raised against its smallest subunit (56 kDa) and used for screening a yeast cDNA library. This yielded an immunopositive cDNA clone of 1.7 kb, containing an open reading frame of 1485 base pairs. Its sequence, called TPS1 (for trehalose-6-phosphate synthase), was represented by a single gene in the yeast genome and was found to be almost identical with the recently sequenced CIF1, a gene important for carbon catabolite inactivation, believed to be allelic with FDP1. A mutant obtained by disruption of TPS1 had a very low activity of trehalose-6-phosphate synthase, indicating that TPS1 is an important component of the enzyme. The mutant also showed a growth defect when transferred from glycerol to glucose, a phenotype similar to that of the cif1 and fdp1 mutants deficient in carbon catabolite inactivation. Thus, the smallest subunit of the biosynthetic enzyme trehalose-6-phosphate synthase appears to have, in addition, a central regulatory role in the carbohydrate metabolism of yeast.  相似文献   

13.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

14.
B. Elliott  R. S. Haltiwanger    B. Futcher 《Genetics》1996,144(3):923-933
We isolated a mutant strain unable to acquire heat shock resistance in stationary phase. Two mutations contributed to this phenotype. One mutation was at the TPS2locus, which encodes trehalose-6-phosphate phosphatase. The mutant fails to make trehalose and accumulates trehalose-6-phosphate. The other mutation was at the HSP104 locus. Gene disruptions showed that tps2 and hsp104 null mutants each produced moderate heat shock sensitivity in stationary phase cells. The two mutations were synergistic and the double mutant had little or no stationary phase-induced heat shock resistance. The same effect was seen in the tps1 (trehalose-6-phosphate synthase) hsp104 double mutant, suggesting that the extreme heat shock sensitivity was due mainly to a lack of trehalose rather than to the presence of trehalose-6-phosphate. However, accumulation of trehalose-6-phosphate did cause some phenotypes in the tps2 mutant, such as temperature sensitivity for growth. Finally, we isolated a high copy number suppressor of the temperature sensitivity of tps2, which we call PMU1, which reduced the levels of trehalose-6-phosphate in tps2 mutants. The encoded protein has a region homologous to the active site of phosphomutases.  相似文献   

15.
The activation of glycogen synthase by insulin is in many instances stimulated by the presence of extracellular glucose. Previous observations in cell extracts, glycogen pellets and other crude systems suggest that this stimulation may be due to an increase in glucose 6-phosphate, which activates the dephosphorylation of glycogen synthase by protein phosphatases. Using purified rabbit muscle glycogen synthase D and protein phosphatases 1 and 2A, the types responsible for the activation of muscle synthase, it was found that glucose 6-phosphate, at low, physiological concentrations, stimulated the dephosphorylation of glycogen synthase. Both types of phosphatase were stimulated to the same extent when acting on glycogen synthase. The dephosphorylation of other protein substrates of the phosphatases was either not affected or inhibited by glucose 6-phosphate. It appears that the stimulatory effect of glucose 6-phosphate at physiological concentrations is apparently specific for glycogen synthase, and most likely due to an allosteric configuration change of this enzyme which facilitates its dephosphorylation. In addition, the effects of other reported modulators of glycogen synthase dephosphorylation, AMP, ATP and Mg2+, were studied in this 'in vitro' system.  相似文献   

16.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed.  相似文献   

17.
The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins.  相似文献   

18.
Trehalose is a non-reducing disaccharide of glucose that functions as a compatible solute in the stabilization of biological structures under heat and desiccation stress in bacteria, fungi, and some “resurrection plants”. In the plant kingdom, trehalose is biosynthesized by trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Over-expression of exogenous and endogenous genes encoding TPS and TPP is reported to be effective for improving abiotic stress tolerance in tobacco, potato, tomato, rice, and Arabidopsis. On the basis of bioinformatics prediction, we cloned a fragment containing an open reading frame of 2,820 bp from maize, which encodes a protein of 939 amino acids. Phylogenetic analysis showed that this gene belongs to the class I subfamily of the TPS gene family. Analysis of conserved domains revealed the presence of a TPS domain and a TPP domain. Yeast complementation with TPS and TPP mutants demonstrated that this protein has the activity of trehalose-6-phosphate synthase. Semi-quantitative RT-PCR and real-time quantitative PCR indicated that the expression of this gene is upregulated in response to both salt and cold stress.  相似文献   

19.
Improved methodology was used to establish that the phosphorylation of a serine located 10 residues from the N-terminus of glycogen synthase (N10) increases from 0.12 mol.mol-1 to 0.54 mol.mol-1 in vivo in response to adrenalin. The only 'N10 kinase' detected in muscle extracts was casein kinase-1 (CK1), although its activity was unaffected by injection of adrenalin in vivo or by incubation with cyclic-AMP-dependent protein kinase and MgATP in vitro. Prior phosphorylation of the serine residue N7 by phosphorylase kinase increased sixfold the rate of phosphorylation of glycogen synthase by CK1, and altered the specificity of CK1 so that it phosphorylated the serine residue N10 specifically. Stoichiometric phosphorylation of N7 decreased the activity ratio (+/- glucose 6-phosphate) of glycogen synthase from 0.80 to 0.45, and subsequent phosphorylation of N10 to 0.8 mol.mol-1 produced a further decrease to 0.17, demonstrating that N10 phosphorylation inhibits glycogen synthase. The major 'N10 phosphatase' in skeletal muscle extracts was identified as the glycogen-associated form of protein phosphatase-1 (PP1G), accounting for approximately 75% of the N10 phosphatase activity in the extracts and about 90% of the activity in isolated glycogen particles. Phosphorylation of N10, after prior phosphorylation of N7, decreased the rate of dephosphorylation of N7. These results, in conjunction with previous findings, establish that adrenalin inhibits glycogen synthase by increasing the phosphorylation of N7, N10 and three further serines located 30, 34 and 38 residues from the start of the C-terminal CNBr peptide (termed the region C30-C38). They also indicate that increased phosphorylation of N10, the region C30-C38, and perhaps N7, is initiated through the inhibition of PP1G by adrenalin, which results from phosphorylation of its glycogen-targetting subunit by cyclic-AMP-dependent protein kinase [Hubbard, M.J. & Cohen, P. (1989) Eur. J. Biochem. 186, 711-716]. The conclusion that direct phosphorylation of glycogen synthase by cyclic-AMP-dependent protein kinase makes little contribution to inhibition by adrenalin, is at variance with the teachings of the major textbooks of biochemistry.  相似文献   

20.
Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号