首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A locality in the district of Tlalpan, Mexico City, was selected in order to identify the viral agents in children younger than 5 years of age with acute respiratory infection (ARI). A total of 300 children were randomly selected and were included in this study for a period of 13 months. During this period nasopharyngeal exudates were collected for the isolation of viral agents. Monoclonal fluorescent antibodies were used for viral identification after cell culture. Viral infection was detected in 65% of the specimens. The respiratory syncytial virus (RSV) was the most common virus agent detected. Children required an average of two consultations during the study period. Two high incidence peaks were observed, one during the summer and the other during winter; the most frequent viruses during these seasons were influenza A and RSV, respectively. The largest number of viruses was isolated in the group of children between 1 and 2 years of age and in the group between 4 and 5 years of age. This study demonstrated the presence of ARI and of different viruses in a period of 13 months, as well as the most frequent viruses in children younger than 5 years of age from a community of Mexico City.  相似文献   

2.
3.
Follow-up study of type C influenza outbreak in a children's home   总被引:3,自引:0,他引:3  
A follow-up study of type C influenza in a children's home was made where the first outbreak of type C influenza occurred in March, 1981. During the survey period of 2 years, 2 additional outbreaks occurred in April and October, 1982 and 4 cases of the secondary and 2 cases of the tertiary infections were serologically confirmed. All of the children exposed to the outbreaks, except 2 particular cases who were suffering from German measles, showed similar mild respiratory symptoms characterized by fever and long-lasting nasal discharge, irrespective of primary, secondary, and tertiary infections. No case of inapparent infection was observed. Incubation period was estimated to be not longer than 5 days and the period of virus shedding, to be longer than 22 days. Antibody response in the sera of patients to type C influenza virus was equally good after every infection, although it was not efficient to prevent the succeeding infection. Factors involved in the repeated infections of type C influenza were discussed.  相似文献   

4.
Between 1980 and 1985, Czechoslovakia had experienced 4 and the USSR 3 major influenza outbreaks. Of the 3 epidemic outbreaks in the USSR, 2 were associated with influenza B virus (in the 1980/81 and 1983/84 seasons) and 1 with influenza A virus of the H3N2 subtype. In the USSR, influenza A (H1N1) virus never predominated as a cause of epidemic during the 5 years period. In Czechoslovakia, 2 epidemics (in the 1980/81 and 1983/84 seasons) were due to influenza A (H1N1) virus. The epidemic in the 1981/82 season had two waves of unequal heights and a mixed type B and subtype A (H3N2) etiology; a two-wave epidemic associated with isolates of influenza A (H1N1) and influenza B viruses was also recorded in the 1983/84 season. The influenza A (H3N2) epidemic in 1983 was of explosive character. All influenza viruses circulating in the two countries between 1980 and 1985 were of the same antigenic profile, but were isolated from the epidemics that occurred in different influenza seasons. The virological surveillance revealed strains of virus closely related to drift variants detected from outbreaks in 1977-1979 and the new variants A/Chile 1/83, A/Philippines 2/82, A/Caen 1/84 and B/USSR 100/83.  相似文献   

5.

Background

The optimal vaccination strategy to mitigate the impact of influenza epidemics is unclear. In 2005, a countywide school-based influenza vaccination campaign was launched in Knox County, Tennessee (population 385,899). Approximately 41% and 48% of eligible county children aged 5–17 years were immunized with live attenuated influenza vaccine before the 2005–2006 and 2006–2007 influenza seasons, respectively. We sought to determine the population impact of this campaign.

Methods

Laboratory-confirmed influenza data defined influenza seasons. We calculated the incidence of medically attended acute respiratory illness attributable to influenza in Knox and Knox-surrounding counties (concurrent controls) during consecutive seasons (5 precampaign and 2 campaign seasons) using negative binomial regression and rate difference methods. Age-stratified analyses compared the incidence of emergency department (ED) visits and hospitalizations attributable to influenza.

Results

During precampaign seasons, estimated ED visit rates attributable to influenza were 12.39 (95% CI: 10.34–14.44) per 1000 Knox children aged 5–17 years and similar in Knox-surrounding counties. During the campaign seasons, annual Knox influenza-associated ED visit rates declined relative to rates in Knox-surrounding counties: rate ratios 0.55 (95% CI: 0.27–0.83) and 0.70 (95% CI: 0.56–0.84) for the first and second campaign seasons, respectively. Overall, there were about 35% or 4.86 per 1000 fewer influenza-associated ED visits among Knox County children aged 5–17 years attributable to the campaign. No significant declines in Knox compared to surrounding counties were detected for influenza associated ED visits in children aged <5 years, all adults combined or selected adult age subgroups, although power for these analyses was limited. Alternate rate-difference analyses yielded consistent results.

Conclusion

Vaccination of approximately 45% of Knox school-aged children with influenza vaccine was associated with a 35% annual reduction (4.86 per 1000) in ED visit rates attributable to influenza. Higher vaccination coverage and/or larger studies would be needed to determine whether similar interventions have indirect benefits in other age groups.  相似文献   

6.
7.
Hoen AG  Buckeridge DL  Charland KM  Mandl KD  Quach C  Brownstein JS 《CMAJ》2011,183(13):E1025-E1032

Background:

Starting in the 2006/2007 influenza season, the US Advisory Committee on Immunization Practices expanded its recommendations for seasonal influenza vaccination to include healthy children aged 24–59 months. The parallel Canadian organization, the National Advisory Committee on Immunization, did not at that time issue a similar recommendation, thereby creating a natural experiment to evaluate the effect of the policy in the United States.

Methods:

We examined data for 2000/2001 through 2008/2009 and estimated relative changes in visits to the emergency department for influenza-like illness at two pediatric hospitals, one in Boston, Massachusetts, and the other in Montréal, Quebec, following the US policy change. Models were adjusted for virologic factors, seasonal trends and all-cause utilization of the emergency department.

Results:

Of 1 043 989 visits to the emergency departments of the two hospitals for any reason during the study period, 114 657 visits were related to influenza-like illness. Adjusted models estimated a 34% decline in rates of influenza-like illness among children two to four years old in the US hospital relative to the Canadian hospital (rate ratio 0.66, 95% confidence interval 0.58–0.75) following the 2006 policy change of the Advisory Committee on Immunization Practices. This was accompanied by more modest declines of 11% to 18% for the other age groups studied.

Interpretation:

The divergence in influenza rates among children in the US and Canadian sample populations after institution of the US policy to vaccinate children two to four years of age is evidence that the recommendation of the US Advisory Committee on Immunization Practices resulted in a reduction in influenza-related morbidity in the target group and may have indirectly affected other pediatric age groups. Provincial adoption of the 2010 recommendation of teh National Advisory Committee on Immunization in Canada to vaccinate childen two to four years of age might positively affect influenza morbidity in Canada.Seasonal influenza is an important cause of visits to the emergency department among children during winter months, and its control and prevention rely on annual vaccination.14 In the United States, the Advisory Committee on Immunization Practices is responsible for guiding immunization practices, and it revises its recommendations annually. Until the 2004/2005 influenza season, vaccination was targeted to primarily older individuals and those with certain medical conditions.5 On the basis of evidence that young children are at elevated risk for admission to hospital because of influenza-related complications, the recommendations were expanded for the 2004/2005 season to include healthy children aged 6–23 months.6Starting in the 2006/2007 season, the recommendations of the Advisory Committee on Immunization Practices regarding influenza vaccination were expanded again to include healthy children aged 24–59 months, a shift that added 10.6 million children to the target group.7 For the 2008/2009 season, recommendations were further expanded to include all persons 6 months to 18 years old,8 and for the 2010/2011 season, the influenza vaccine was advised for all individuals over 6 months of age.9In Canada, the National Advisory Committee on Immunization is the federal organization responsible for guiding the use of vaccines. Until the 2006/2007 season, the recommendations of this committee for the use of seasonal influenza vaccines were harmonized with those of its US counterpart. However, it was not until the 2010/2011 season that the Canadian committee began recommending that children two to four years old be routinely vaccinated against influenza, and not all Canadian provinces have adopted this recommendation.We aimed to examine the effect of the 2006 recommendation of the Advisory Committee on Immunization Practices to expand influenza vaccination coverage to preschool-aged children. Interannual variation in severity of disease and effectiveness of the vaccine make it difficult to directly estimate the effect of an intervention on the incidence of influenza in any given community. Instead, we compared surveillance data from the emergency departments of two pediatric hospitals, one in Boston, Massachusetts, and the other in Montréal, Quebec, cities with similar epidemiologic dynamics for seasonal influenza.10 Our specific objective was to estimate the relative effect of the 2006 US recommendation on influenza-related emergency department visits to Children’s Hospital Boston, with the Montreal Children’s Hospital as an untreated control.  相似文献   

8.
9.
The continued pandemic threat posed by avian influenza viruses in Hong Kong   总被引:9,自引:0,他引:9  
In 1997, a highly pathogenic avian H5N1 influenza virus was transmitted directly from live commercial poultry to humans in Hong Kong. Of the 18 people infected, six died. The molecular basis for the high virulence of this virus in mice was found to involve an amino acid change in the PB2 protein. To eliminate the source of the pathogenic virus, all birds in the Hong Kong markets were slaughtered. In 1999, another avian influenza virus of H9N2 subtype was transmitted to two children in Hong Kong. In 2000-2002, H5N1 avian viruses reappeared in the poultry markets of Hong Kong, although they have not infected humans. Continued circulation of H5N1 and other avian viruses in Hong Kong raises the possibility of future human influenza outbreaks. Moreover, the acquisition of properties of human viruses by the avian viruses currently circulating in southeast China might result in a pandemic.  相似文献   

10.
RN Guo  HZ Zheng  LQ Huang  Y Zhou  X Zhang  CK Liang  JY Lin  JF He  JQ Zhang 《PloS one》2012,7(7):e41403

Objectives

To understand the incidence of outpatient influenza cases in a subtropical area of China and the associated economic burden on patients'' families.

Methods

A hospital-based prospective study was conducted in Zhuhai City during 2008–2009. All outpatient influenza-like illness (ILI) cases were identified in 28 sentinel hospitals. A representative sample of throat swabs from ILI cases were collected for virus isolation using Madin-Darby canine kidney cells. The incidence of outpatient influenza cases in Zhuhai was estimated on the basis of the number of influenza patients detected by the sentinel sites. A telephone survey on the direct costs associated with illness was conducted as a follow-up.

Results

The incidence of influenza was estimated to be 4.1 per 1,000 population in 2008 and 19.2 per 1,000 population in 2009. Children aged <5 years were the most-affected population, suffering from influenza at the highest rates (34.3 per 1,000 population in 2008 and 95.3 per 1,000 population in 2009). A high incidence of 29.2–40.9 per 1000 population was also seen in young people aged 5–24 years in 2009. ILI activity and influenza virus isolations adopted a consistent seasonal pattern, with a summer peak in July 2008 and the longest epidemic period lasting from July–December 2009. The medical costs per episode of influenza among urban patients were higher than those for rural patients. A total of $1.1 million in direct economic losses were estimated to be associated with outpatient influenza during 2008–2009 in Zhuhai community.

Conclusions

Influenza attacks children aged <5 years in greater proportions than children in other age groups. Seasonal influenza 2008 and Pandemic influenza A (H1N1) 2009 had different epidemiological and etiological characteristics. Direct costs (mostly medical costs) impose an enormous burden on the patient family. Vaccination strategies for high-risk groups need to be further strengthened.  相似文献   

11.

Background

Most influenza surveillance is based on data from urban sentinel hospitals; little is known about influenza activity in rural communities. We conducted influenza surveillance in a rural region of China with the aim of detecting influenza activity in the 2009/2010 influenza season.

Methods

The study was conducted from October 2009 to March 2010. Real-time polymerase chain reaction was used to confirm influenza cases. Over-the-counter (OTC) drug sales were daily collected in drugstores and hospitals/clinics. Space-time scan statistics were used to identify clusters of ILI in community. The incidence rate of ILI/influenza was estimated on the basis of the number of ILI/influenza cases detected by the hospitals/clinics.

Results

A total of 434 ILI cases (3.88% of all consultations) were reported; 64.71% of these cases were influenza A (H1N1) pdm09. The estimated incidence rate of ILI and influenza were 5.19/100 and 0.40/100, respectively. The numbers of ILI cases and OTC drug purchases in the previous 7 days were strongly correlated (Spearman rank correlation coefficient [r] = 0.620, P = 0.001). Four ILI outbreaks were detected by space-time permutation analysis.

Conclusions

This rural community surveillance detected influenza A (H1N1) pdm09 activity and outbreaks in the 2009/2010 influenza season and enabled estimation of the incidence rate of influenza. It also provides a scientific data for public health measures.  相似文献   

12.
An understanding of the occurrence and comparative timing of influenza infections in different age groups is important for developing community response and disease control measures. This study uses data from a Scandinavian county (population 427.000) to investigate whether age was a determinant for being diagnosed with influenza 2005-2010 and to examine if age was associated with case timing during outbreaks. Aggregated demographic data were collected from Statistics Sweden, while influenza case data were collected from a county-wide electronic health record system. A logistic regression analysis was used to explore whether case risk was associated with age and outbreak. An analysis of variance was used to explore whether day for diagnosis was also associated to age and outbreak. The clinical case data were validated against case data from microbiological laboratories during one control year. The proportion of cases from the age groups 10-19 (p<0.001) and 20-29 years old (p<0.01) were found to be larger during the A pH1N1 outbreak in 2009 than during the seasonal outbreaks. An interaction between age and outbreak was observed (p<0.001) indicating a difference in age effects between circulating virus types; this interaction persisted for seasonal outbreaks only (p<0.001). The outbreaks also differed regarding when the age groups received their diagnosis (p<0.001). A post-hoc analysis showed a tendency for the young age groups, in particular the group 10-19 year olds, led outbreaks with influenza type A H1 circulating, while A H3N2 outbreaks displayed little variations in timing. The validation analysis showed a strong correlation (r = 0.625;p<0.001) between the recorded numbers of clinically and microbiologically defined influenza cases. Our findings demonstrate the complexity of age effects underlying the emergence of local influenza outbreaks. Disentangling these effects on the causal pathways will require an integrated information infrastructure for data collection and repeated studies of well-defined communities.  相似文献   

13.
Kida H 《Uirusu》2004,54(1):93-96
Recent outbreaks of highly pathogenic avian influenza in chickens and ducks that occurred in 9 Asian countries including Japan alarmed to realize that there is no border for infections and gave a rise to great concern for human health as well as for agriculture. This H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in Viet Nam and Thailand; 15 deaths of 22 cases and 8 of 12, respectively. A second concern was the possibility that the situation could give rise to another influenza pandemic in humans since genetic reassortment may occur between avian and human influenza viruses when a person is concurrently infected with viruses from both species. This process of gene swapping inside the human body can give rise to a new subtype of the influenza virus to which humans would not have immunity. The outbreaks also emphasized the need to continue active surveillance on avian influenza throughout the year to undertake aggressive emergency control measures as soon as an infection is detected.  相似文献   

14.

Background

There is limited information about the epidemiology of influenza in Africa. We describe the epidemiology and seasonality of influenza in Morocco from 1996 to 2009 with particular emphasis on the 2007–2008 and 2008–2009 influenza seasons. Successes and challenges of the enhanced surveillance system introduced in 2007 are also discussed.

Methods

Virologic sentinel surveillance for influenza virus was initiated in Morocco in 1996 using a network of private practitioners that collected oro-pharyngeal and naso-pharyngeal swabs from outpatients presenting with influenza-like-illness (ILI). The surveillance network expanded over the years to include inpatients presenting with severe acute respiratory illness (SARI) at hospitals and syndromic surveillance for ILI and acute respiratory infection (ARI). Respiratory samples and structured questionnaires were collected from eligible patients, and samples were tested by immunofluorescence assays and by viral isolation for influenza viruses.

Results

We obtained a total of 6465 respiratory specimens during 1996 to 2009, of which, 3102 were collected during 2007–2009. Of those, 2249 (72%) were from patients with ILI, and 853 (27%) were from patients with SARI. Among the 3,102 patients, 98 (3%) had laboratory-confirmed influenza, of whom, 85 (87%) had ILI and 13 (13%) had SARI. Among ILI patients, the highest proportion of laboratory-confirmed influenza occurred in children less than 5 years of age (3/169; 2% during 2007–2008 and 23/271; 9% during 2008–2009) and patients 25–59 years of age (8/440; 2% during 2007–2009 and 21/483; 4% during 2008–2009). All SARI patients with influenza were less than 14 years of age. During all surveillance years, influenza virus circulation was seasonal with peak circulation during the winter months of October through April.

Conclusion

Influenza results in both mild and severe respiratory infections in Morocco, and accounted for a large proportion of all hospitalizations for severe respiratory illness among children 5 years of age and younger.  相似文献   

15.
Enhanced influenza surveillance was implemented to analyze transmission dynamics particularly driving force of influenza transmission in a community during 2011/12 and 2012/13 seasons in Odate City, Japan. In these two consecutive seasons, influenza A(H3N2) was the predominant influenza A subtype. Suspected influenza cases were tested by commercial rapid test kits. Demographic and epidemiological information of influenza positive cases were recorded using a standardized questionnaire, which included age or age group, date of visit, date of fever onset, and the result of rapid test kit. Epidemiological parameters including epidemic midpoint (EM) and growth rate (GR) were analyzed. In 2012/13 season, numbers of influenza A positive cases were significantly lower among preschool (212 cases) and primary school (224 cases) children than in 2011/12 season (461 and 538 cases, respectively). Simultaneously, total influenza A cases were also reduced from 2,092 in 2011/12 season to 1,846 in 2012/13 season. The EMs in preschool and primary school children were earlier than EMs for adult and all age group in both 2011/12 and 2012/13 seasons. The GR in 2012/13 season was significantly lower than that in 2011/12 season (0.11 and 0.18, respectively, p = 0.003). Multiple linear regression analysis by school districts revealed that GRs in both seasons were significantly correlated with the incidence of school age children. Our findings suggest that preschool and primary school children played an important role as a driving force of epidemics in the community in both 2011/12 and 2012/13 seasons. The reduction of total influenza A cases in 2012/13 season can be explained by decreased susceptible population in these age groups due to immunity acquired by infections in 2011/12 season. Further investigations are needed to investigate the effect of pre-existing immunity on influenza transmission in the community.  相似文献   

16.
An understanding of the occurrence and comparative timing of influenza infections in different age groups is important for developing community response and disease control measures. This study uses data from a Scandinavian county (population 427.000) to investigate whether age was a determinant for being diagnosed with influenza 2005–2010 and to examine if age was associated with case timing during outbreaks. Aggregated demographic data were collected from Statistics Sweden, while influenza case data were collected from a county-wide electronic health record system. A logistic regression analysis was used to explore whether case risk was associated with age and outbreak. An analysis of variance was used to explore whether day for diagnosis was also associated to age and outbreak. The clinical case data were validated against case data from microbiological laboratories during one control year. The proportion of cases from the age groups 10–19 (p<0.001) and 20–29 years old (p<0.01) were found to be larger during the A pH1N1 outbreak in 2009 than during the seasonal outbreaks. An interaction between age and outbreak was observed (p<0.001) indicating a difference in age effects between circulating virus types; this interaction persisted for seasonal outbreaks only (p<0.001). The outbreaks also differed regarding when the age groups received their diagnosis (p<0.001). A post-hoc analysis showed a tendency for the young age groups, in particular the group 10–19 year olds, led outbreaks with influenza type A H1 circulating, while A H3N2 outbreaks displayed little variations in timing. The validation analysis showed a strong correlation (r = 0.625;p<0.001) between the recorded numbers of clinically and microbiologically defined influenza cases. Our findings demonstrate the complexity of age effects underlying the emergence of local influenza outbreaks. Disentangling these effects on the causal pathways will require an integrated information infrastructure for data collection and repeated studies of well-defined communities.  相似文献   

17.
In temperate regions of the world, influenza epidemics follow a highly regular seasonal pattern, in which activity peaks in midwinter. Consistently with this epidemiology, we have shown previously that the aerosol transmission of a seasonal H3N2 influenza virus is most efficient under cold, dry conditions. With the 2009 H1N1 pandemic, an exception to the standard seasonality of influenza developed: during 2009 in the Northern Hemisphere, an unusually high level of influenza virus activity over the spring and summer months was followed by a widespread epidemic which peaked in late October, approximately 2.5 months earlier than usual. Herein we show that aerosol transmission of a 2009 pandemic strain shows a dependence on relative humidity and temperature very similar to that of a seasonal H3N2 influenza virus. Our data indicate that the observed differences in the timings of outbreaks with regard to the seasons are most likely not due to intrinsic differences in transmission between the pandemic H1N1 and seasonal H3N2 influenza viruses.  相似文献   

18.
Liu CM  Lin SH  Chen YC  Lin KC  Wu TS  King CC 《PloS one》2007,2(2):e191
Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus.  相似文献   

19.
Recent outbreaks of highly pathogenic avian influenza A virus (H5N1 subtype) infections in poultry and humans (through direct contact with infected birds) have raised concerns that a new influenza pandemic might occur in the near future. Effective vaccines against H5N1 virus are, therefore, urgently needed. Reverse-genetics-based inactivated vaccines have been prepared according to World Health Organization (WHO) recommendations and are now undergoing clinical evaluation in several countries. Here, we review the current strategies for the development of H5N1 influenza vaccines, and future directions for vaccine development.  相似文献   

20.
Mathes RW  Ito K  Matte T 《PloS one》2011,6(2):e14677

Background

Prospective syndromic surveillance of emergency department visits has been used for near-real time tracking of communicable diseases to detect outbreaks or other unexpected disease clusters. The utility of syndromic surveillance for tracking cardiovascular events, which may be influenced by environmental factors and influenza, has not been evaluated. We developed and evaluated a method for tracking cardiovascular events using emergency department free-text chief complaints.

Methodology/Principal Findings

There were three phases to our analysis. First we applied text processing algorithms based on sensitivity, specificity, and positive predictive value to chief complaint data reported by 11 New York City emergency departments for which ICD-9 discharge diagnosis codes were available. Second, the same algorithms were applied to data reported by a larger sample of 50 New York City emergency departments for which discharge diagnosis was unavailable. From this more complete data, we evaluated the consistency of temporal variation of cardiovascular syndromic events and hospitalizations from 76 New York City hospitals. Finally, we examined associations between particulate matter ≤2.5 µm (PM2.5), syndromic events, and hospitalizations. Sensitivity and positive predictive value were low for syndromic events, while specificity was high. Utilizing the larger sample of emergency departments, a strong day of week pattern and weak seasonal trend were observed for syndromic events and hospitalizations. These time-series were highly correlated after removing the day-of-week, holiday, and seasonal trends. The estimated percent excess risks in the cold season (October to March) were 1.9% (95% confidence interval (CI): 0.6, 3.2), 2.1% (95% CI: 0.9, 3.3), and 1.8% (95%CI: 0.5, 3.0) per same-day 10 µg/m3 increase in PM2.5 for cardiac-only syndromic data, cardiovascular syndromic data, and hospitalizations, respectively.

Conclusions/Significance

Near real-time emergency department chief complaint data may be useful for timely surveillance of cardiovascular morbidity related to ambient air pollution and other environmental events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号