首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an “open” conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.  相似文献   

2.
Mycobacterium tuberculosis ornithine carbamoyltransferase (Mtb OTC) catalyzes the sixth step in arginine biosynthesis; it produces citrulline from carbamoyl phosphate (CP) and ornithine (ORN). Here, we report the crystal structures of Mtb OTC in orthorhombic (form I) and hexagonal (form II) space groups. The molecules in form II are complexed with CP and l-norvaline (NVA); the latter is a competitive inhibitor of OTC. The asymmetric unit in form I contains a pseudo hexamer with 32 point group symmetry. The CP and NVA in form II induce a remarkable conformational change in the 80s and the 240s loops with the displacement of these loops towards the active site. The displacement of these loops is strikingly different from that seen in other OTC structures. In addition, the ligands induce a domain closure of 4.4° in form II. Sequence comparison of active-site residues of Mtb OTC with several other OTCs of known structure reveals that they are virtually identical. The interactions involving the active-site residues of Mtb OTC with CP and NVA and a modeling study of ORN in the form II structure strongly rule out an earlier proposed mechanistic role of Cys264 in catalysis and suggest a possible mechanism for OTC. Our results strongly support the view that ORN with an already deprotonated Nε atom is the species that binds to the enzyme and that one of the phosphate oxygen atoms of CP is likely to be involved in accepting a proton from the doubly protonated Nε atom of ORN. We have interpreted this deprotonation as part of the collapse of the transition state of the reaction.  相似文献   

3.
The hyperthermophiles Pyrococcus furiosus and Pyrococcus abyssi make pyrimidines and arginine from carbamoyl phosphate (CP) synthesized by an enzyme that differs from other carbamoyl-phosphate synthetases and that resembles carbamate kinase (CK) in polypeptide mass, amino acid sequence, and oligomeric organization. This enzyme was reported to use ammonia, bicarbonate, and two ATP molecules as carbamoyl-phosphate synthetases to make CP and to exhibit bicarbonatedependent ATPase activity. We have reexamined these findings using the enzyme of P. furiosus expressed in Escherichia coli from the corresponding gene cloned in a plasmid. We show that the enzyme uses chemically made carbamate rather than ammonia and bicarbonate and catalyzes a reaction with the stoichiometry and equilibrium that are typical for CK. Furthermore, the enzyme catalyzes actively full reversion of the CK reaction and exhibits little bicarbonate-dependent ATPase. In addition, it cross-reacts with antibodies raised against CK from Enterococcus faecium, and its three-dimensional structure, judged by x-ray crystallography of enzyme crystals, is very similar to that of CK. Thus, the enzyme is, in all respects other than its function in vivo, a CK. Because in other organisms the function of CK is to make ATP from ADP and CP derived from arginine catabolism, this is the first example of using CK for making rather than using CP. The reasons for this use and the adaptation of the enzyme to this new function are discussed.  相似文献   

4.
Shi D  Yu X  Zhao G  Ho J  Lu S  Allewell NM  Tuchman M 《Proteins》2012,80(5):1436-1447
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C‐terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C‐terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C‐terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240′s loop. PTCase lacks the proline‐rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram‐positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C‐terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Two different approaches provided evidence for a physical interaction between the carbamate kinase-like carbamoyl-phosphate synthetase (CKase) and ornithine carbamoyltransferase (OTCase) from the hyperthermophilic archaeon Pyrococcus furiosus. Affinity electrophoresis indicated that CKase and OTCase associate into a multienzyme cluster. Further evidence for a biologically significant interaction between CKase and OTCase was obtained by co-immunoprecipitation combined with formaldehyde cross-linking experiments. These experiments support the hypothesis that CKase and OTCase form an efficient channeling cluster for carbamoyl phosphate, an extremely thermolabile and potentially toxic metabolic intermediate. Therefore, by physically interacting with each other, CKase and OTCase prevent the thermodenaturation of carbamoyl phosphate in the aqueous cytoplasmic environment.  相似文献   

6.
【背景】氨甲酰磷酸是生物合成代谢中精氨酸与嘧啶的重要前体物质,在工业微生物生产精氨酸与嘧啶及其衍生物中发挥关键作用。【目的】在大肠杆菌Escherichia coli BW25113中比较氨甲酰磷酸不同合成途径的催化效率。【方法】在大肠杆菌Escherichia coli BW25113中过表达鸟氨酸氨甲酰基转移酶(OTC)的基础上,分别过表达大肠杆菌自身的氨基甲酸激酶(CK)和氨甲酰磷酸合酶(CPSⅡ)并表征其反应效果。通过优化底物供应(调整底物浓度与引入L-谷氨酰胺合成酶)对CK与CPSⅡ的催化反应进行优化。【结果】在大肠杆菌中过表达OTC,建立细胞水平氨甲酰磷酸检测体系。在此基础上比较不同来源的CK,发现大肠杆菌来源的CK效果最好,50mmol/LNH4HCO3条件下全细胞催化9h得到2.95±0.15mmol/LL-瓜氨酸;过表达CPSⅡ时,50mmol/LL-谷氨酰胺催化9h得到3.16±0.29 mmol/L L-瓜氨酸。通过改变底物NH4HCO3浓度和引入外源L-谷氨酰胺合成酶(GS)等方式对CK与CPSⅡ的催化反应分别进行优化后,100 mmol/L NH4HCO3条件下,L-瓜氨酸浓度分别提高至4.67±0.55mmol/L和6.12±0.38mmol/L,且过表达GS后CPSⅡ途径可以利用NH3,不需要额外添加L-谷氨酰胺。【结论】引入L-谷氨酰胺合成酶后的CPSⅡ途径合成氨甲酰磷酸的能力优于CK途径,为精氨酸、嘧啶及其衍生物的合成提供了一种更加高效的策略。  相似文献   

7.
Carbamoyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), and aspartate transcarbamylase (ATC) were assayed in extracts from unpollinated ovaries of Pisum sativum L. CPS and OTC activities were, per milligram protein, the highest reported in a plant tissue, representing an estimated 0.1% of the protein in the ovary. The OTC/CPS and ATC/CPS ratios were about 100 and 0.5, respectively, indicating that most of the carbamoyl phosphate is used for arginine synthesis. The weight, protein content, and CPS, OTC, and ATC activities per ovary were determined during the senescence of the ovary and also during fruit set induced by treatment with gibberellic acid (GA3). In the nontreated ovary the weight and the protein first increased and then decreased dramatically, but the decrease in protein took place much earlier. In the GA3-treated ovaries the increase in weight was considerably greater than the increase in the protein. Whether or not the ovaries were treated with GA3, CPS, OTC, and ATC activities closely followed the changes in protein, and thus their ratios and specific activities remained essentially constant. It appears that treatment with GA3 increases the amount of protein and enzymic activities by preventing a large increase in the rate of protein degradation. In addition, the effects of acetylglutamate, ornithine, and UMP on CPS activity were studied. The pea enzyme exhibits regulatory properties intermediate between those of Escherichia coli and the ureotelic liver enzymes.  相似文献   

8.
Hyperthermophiles and the problem of DNA instability   总被引:7,自引:0,他引:7  
Rates of chemical decomposition of DNA at the optimal growth temperatures of hyperthermophiles seem incongruent with the requirements of accurate genome replication. The peculiar physiology, ecology and phylogeny of hyperthermophiles combine to suggest that these prokaryotes have solved a molecular problem (spontaneous loss of native DNA structure) of a magnitude that well-studied microorganisms do not face. The failure of DNA base composition to correlate with optimal growth temperature among hyperthermophiles provides indirect evidence that other mechanisms maintain their chromosomal DNA in the duplex form. Studies in vitro indicate that DNA primary structure is more difficult to maintain at extremely high temperature than is secondary structure, yet hyperthermophiles exhibit only modest levels of spontaneous mutation. Radiation sensitivity studies also indicate that hyperthermophiles repair their DNA efficiently in vivo , and underlying mechanisms are beginning to be examined. Several enzymes of DNA metabolism from hyperthermophilic archaea exhibit unusual biochemical features that may ultimately prove relevant to DNA repair. However, genomic sequencing results suggest that many DNA repair genes of hyperthermophilic archaea may not be recognized because they are not sufficiently related to those of well-studied organisms.  相似文献   

9.
10.
Ornithine and putrescine carbamoyltransferases from Streptococcus faecalis ATCC11700 have been purified and their structural properties compared. The molecular weight of native ornithine carbamoyltransferase, measured by molecular sieving, is 250 000. It is composed of six apparently identical subunits with a molecular weight of 39 000, as determined by cross-linking with the bifunctional reagent glutaraldehyde followed by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Using the same method, putrescine carbamoyltransferase is a trimer of 140 000 consisting of three identical subunits with a molecular weight of 40 000. Ornithine carbamoyltransferase displays a narrow specificity towards its substrate, ornithine. In contrast, putrescine carbamoyltransferase carbamoylates ornithine and several diamines (diaminopropane, diaminohexane, spermine, spermidine, cadaverine) in addition to its preferred substrate, putrescine, but with a considerable lower efficiency than for putrescine. The kinetic mechanism of putrescine carbamoyltransferase has been investigated. Initial velocity studies yield intersecting plots using either putrescine or ornithine as substrate, indicating a sequential mechanism. The patterns of protection of the enzyme by the reactants during heat inactivation as well as the results of product and dead-end inhibition studies provide evidence for a random addition of the substrates. The putrescine inhibition that is induced by phosphate does, however, suggest that a preferred pathway exists in which carbamoylphosphate is the leading substrate. The different kinetic constants have been established. The properties of putrescine carbamoyltransferase are compared to the known properties of other carbamoyltransferases. The evolutionary implications of this comparison are discussed.  相似文献   

11.
We reported previously that the capsid protein (CP) of Potato virus A (PVA) is phosphorylated both in virus-infected plants and in vitro. In this study, an enzyme that phosphorylates PVA CP was identified as the protein kinase CK2. The alpha-catalytic subunit of CK2 (CK2alpha) was purified from tobacco and characterized using in-gel kinase assays and liquid chromatography-tandem mass spectrometry. The tobacco CK2alpha gene was cloned and expressed in bacterial cells. Specific antibodies were raised against the recombinant enzyme and used to demonstrate the colocalization of PVA CP and CK2alpha in infected tobacco protoplasts. A major site of CK2 phosphorylation in PVA CP was identified by a combination of mass spectrometric analysis, radioactive phosphopeptide sequencing, and mutagenesis as Thr-242 within a CK2 consensus sequence. Amino acid substitutions that affect the CK2 consensus sequence in CP were introduced into a full-length infectious cDNA clone of PVA tagged with green fluorescent protein. Analysis of the mutant viruses showed that they were defective in cell-to-cell and long-distance movement. Using in vitro assays, we demonstrated that CK2 phosphorylation inhibited the binding of PVA CP to RNA, suggesting a molecular mechanism of CK2 action. These results suggest that the phosphorylation of PVA CP by CK2 plays an important regulatory role in virus infection.  相似文献   

12.
采用开顶式生长室(OTC)模拟增温对植被影响的研究方法, 研究了青藏高原东缘林线交错带糙皮桦(Betula utilis)光合特性对模拟增温的响应。结果表明: 与对照样地相比, OTC内日平均气温(1.2 m)在植物生长季中增加2.9 ℃, 5 cm土壤温度增加0.4 ℃。增温使糙皮桦幼苗叶片的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)分别增加17.4%、21.4%和33.9%, 但对糙皮桦幼苗叶片的水分利用率(WUE)却没有明显影响, 而对糙皮桦的叶氮浓度却表现为显著的负效应。同时, 增温能显著增加糙皮桦幼苗的最大同化速率(Pnmax) (+19.6%)、暗呼吸速率(Rd) (+14.3%)、表观量子效率(AQY) (+7.9%), 但对其光补偿点(LCP)和光饱和点(LSP)却没有明显的影响。此外, 增温使糙皮桦幼苗叶片的最大羧化速率(Vcmax)和电子传递速率(J)分别增加了12.3%和11.7%, 而磷酸丙糖利用率(TPU)和CO2补偿点(CCP)对增温却并不敏感。该研究表明, 模拟增温对林线糙皮桦光合生理总体上表现为正效应, 这有可能帮助该物种对未来气候变化更快更好地适应。  相似文献   

13.
14.
The argR gene of Streptomyces clavuligerus has been located in the upstream region of argG . It encodes a protein of 160 amino acids with a deduced M r of 17 117 for the monomer. Transformants containing the amplified argR gene showed lower activity (50%) of the biosynthetic ornithine carbamoyltransferase (OTC) activity and higher levels (380%) of the catabolic ornithine aminotransferase (OAT) activity than control strains. Amplification of an arginine (ARG) box-containing sequence results in a 2- to 2.5-fold derepression of ornithine acetyltransferase and OTC, suggesting that the repressor is titrated out. Footprinting experiments using the pure homologous arginine repressor (AhrC) of B. subtilis showed a protected 38 nt region (ARG box) in the coding strand upstream of argC . The protected region contained two tandemly repeated imperfect palindromic 18-nt ARG boxes. The repressor–operator interaction was confirmed by band-shift experiments of the DNA fragment containing the protected region. By computer analysis of the Streptomyces sequences available in the databases, a consensus ARG box has been deduced for the genus Streptomyces . This is the first example of a clear regulation of an amino acid biosynthetic pathway in Streptomyces species, challenging the belief that actinomycetes do not have a well-developed regulatory system of these pathways.  相似文献   

15.
The molecular basis of cytokinin action   总被引:4,自引:0,他引:4  
Current understanding of cytokinin (CK) physiology at the cellular level results largely from the manipulation of endogenous CK levels by either application of exogenous CKs or the expression of CK biosynthetic transgenes, as well as the characterisation of single gene mutants. Cytokinins modulate changes in plant gene expression, which are in turn assumed to effect physiological and morphological changes with which CK action is associated. Presently, a major focus of investigation is elucidation of the biochemical events leading from the perception of CK to the manifestation of a response. Analysis of the expression patterns of CK-regulated genes and identification of their products provides one means of investigating CK action at the molecular level. Biochemical approaches have led to the identification of several soluble CK-binding proteins, although their functional roles in CK signalling largely remain uncertain. Conclusive identification of a bona fide CK receptor has yet to be achieved, although several potential candidates have been suggested. Pharmacological and molecular genetic strategies have implicated the involvement of signalling mechanisms likely to be involved in CK action. The apparent involvement of fluctuations in the concentration of intracellular Ca2+, changes in protein phosphorylation as well as DNA and/or protein methylation provide information concerning the types of proteins likely to be involved in the process. Dissection of CK signal transduction chains and elucidation of their interaction with other pathways that regulate plant growth and development is likely to be essential in understanding the mode of action of this poorly understood class of plant growth regulator. However, integration of this knowledge with an improved understanding of the mechanisms whereby overall hormone homeostasis is regulated at the metabolic level will be necessary for comprehensive appreciation of the influence of CKs on plant morphology and physiology.  相似文献   

16.
The interaction of capping protein (CP) with actin filaments is an essential element of actin assembly and actin-based motility in nearly all eukaryotes. The dendritic nucleation model for Arp2/3-based lamellipodial assembly features capping of barbed ends by CP, and the formation of filopodia is proposed to involve inhibition of capping by formins and other proteins. To understand the molecular basis for how CP binds the barbed end of the actin filament, we have used a combination of computational and experimental approaches, primarily involving molecular docking and site-directed mutagenesis. We arrive at a model that supports all of our biochemical data and agrees very well with a cryo-electron microscopy structure of the capped filament. CP interacts with both actin protomers at the barbed end of the filament, and the amphipathic helix at the C-terminus of the β-subunit binds to the hydrophobic cleft on actin, in a manner similar to that of WH2 domains. These studies provide us with new molecular insight into how CP binds to the actin filament.  相似文献   

17.
Human muscle creatine kinase (CK) is an enzyme that plays an important physiological role in the energy metabolism of humans. It also serves as a typical model for studying refolding of proteins. A study of the refolding and reactivation process of guanidine chloride-denatured human muscle CK is described in the present article. The results show that the refolding process can be divided into fast and slow folding phases and that an aggregation process competes with the proper refolding process at high enzyme concentration and high temperature. An intermediate in the early stage of refolding was captured by specific protein molecules: the molecular chaperonin GroEL and alpha(s)-casein. This intermediate was found to be a monomer, which resembles the "molten globule" state in the CK folding pathway. To our knowledge, this is the first monomeric intermediate captured during refolding of CK. We propose that aggregation is caused by interaction between such monomeric intermediates. Binding of GroEL with this intermediate prevents formation of aggregates by decreasing the concentration of free monomeric intermediates, whereas binding of alpha(s)-casein with this intermediate induces more aggregation.  相似文献   

18.
Many evolutionary scenarios describing the history of proteins are based solely on phylogenetic studies. We have designed a new approach that allows ascertainment of such questionable scenarios by taking into account quaternary structures: we used aspartate carbamoyltransferase (ATCase) as a case study. Prokaryotic ATCases correspond to different classes of quaternary structures according to the mode of association of the catalytic PyrB subunit with other polypeptides, either the PyrI regulatory subunit (class B) or a dihydroorotase (class A), which may be active (PyrC, subclass A1) or inactive (PyrC', subclass A2). Class C is uniquely made up of trimers of PyrB. The PyrB phylogenetic tree is not congruent with the tree of life, but it became coherent when we recognized the existence of two families of ATCases, ATC I and ATC II. Remarkably, a very strong correlation was found between the pattern of PyrB phylogenetic clustering and the different classes of quaternary structures of ATCases. All class B ATCases form a clade in family ATC II, which also contains all eukaryotic sequences. In contrast, family ATC I is made up of classes A and C. These results suggest unexpected common ancestry for prokaryotic B and eukaryotic ATCases on the one hand, and for A and C on the other. Thus, the emergence of specific quaternary structures appears to have been a more recent event than the separation into the ATC I and ATC II families. We propose that different evolutionary constraints, depending on the identity of the partners interacting in the different kinds of holoenzymes, operated in a concerted way on the ancestral pyrB genes and the respective associated genes pyrI or pyrC, so as to maintain appropriate inter-polypeptides interactions at the level of quaternary structure. The process of coevolution of genes encoding proteins interacting in various holoenzymes has been assessed by calculating the correlation coefficient between their respective phylogenetic trees. Our approach integrating data obtained from the separate fields of structural biology and molecular evolution could be useful in other cases where pure statistical data need to receive independent confirmation.  相似文献   

19.
20.
Forty-four sequences of ornithine carbamoyltransferases (OTCases) and 33 sequences of aspartate carbamoyltransferases (ATCases) representing the three domains of life were multiply aligned and a phylogenetic tree was inferred from this multiple alignment. The global topology of the composite rooted tree (each enzyme family being used as an outgroup to root the other one) suggests that present-day genes are derived from paralogous ancestral genes which were already of the same size and argues against a mechanism of fusion of independent modules. A closer observation of the detailed topology shows that this tree could not be used to assess the actual order of organismal descent. Indeed, this tree displays a complex topology for many prokaryotic sequences, with polyphyly for Bacteria in both enzyme trees and for the Archaea in the OTCase tree. Moreover, representatives of the two prokaryotic Domains are found to be interspersed in various combinations in both enzyme trees. This complexity may be explained by assuming the occurrence of two subfamilies in the OTCase tree (OTC α and OTC β) and two other ones in the ATCase tree (ATC I and ATC II). These subfamilies could have arisen from duplication and selective losses of some differentiated copies during the successive speciations. We suggest that Archaea and Eukaryotes share a common ancestor in which the ancestral copies giving the present-day ATC II/OTC β combinations were present, whereas Bacteria comprise two classes: one containing the ATC II/OTC α combination and the other harboring the ATC I/OTC β combination. Moreover, multiple horizontal gene transfers could have occurred rather recently amongst prokaryotes. Whichever the actual history of carbamoyltransferases, our data suggest that the last common ancestor to all extant life possessed differentiated copies of genes coding for both carbamoyltransferases, indicating it as a rather sophisticated organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号