首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of the study of the fatty acid content and the functional state of chloroplasts isolated from leaves of pea plants grown during 7 and 14 days in the stationary conditions and under clinorotation (2 rpm) are presented. An increase in the unsaturated fatty acid content occurred after 7-day clinorotation while it insignificantly decreased after more prolonged 14-day clinorotation. A study of the functional state of chloroplasts (the rate of electron transport in photosystems II [PSII] and in photosystem I [PSI] and in the whole photosynthetic electron transport chain) showed its decrease under both terms of clinorotation in comparison with control ones. In addition, 14-day clinorotation caused more significant lowering of the electron transport rate, particularly in PSI. Changes in both the fatty acid content and the electron transport rate are discussed in relation to the activation of lipid peroxidation and the increased production of activated oxygen species in chloroplasts under clinorotation.  相似文献   

2.
Baranenko VV 《Tsitologiia》2001,43(11):1020-1023
The lipid peroxidation intensity and the antioxidant enzyme superoxide dismutase (SOD) activity were studied in chloroplasts of Pisum sativum under clinorotation (for 7 and 14 days) for elucidating mechanisms of biological effect of altered gravity. In comparison with the control, increased LP levels in chloroplasts were established during both the terms of clinorotation. The SOD activity rose in the chloroplasts of plants clinorotated for 7 days, which has a significant protective effect. However, under a longer clinorotation (for 14 days) the SOD activity fell, being, however, higher than in the control samples. In accordance with the Selye oxidative stress theory, plants clinorotated for 7 days are in the phase of growing stability, while plants clinorotated for 14 days are in the phase of decreasing stability.  相似文献   

3.
The effects of clinorotation on the 3 varieties of the wheat plants were studied. The chlorophyll content, photochemical activity of the chloroplasts and changes in wheat streak mosaik virus (WSMV) were analysed. It is established that photosynthetic apparatus in wheat plants, particularly in bred Apogee variety, possesses considerable adaptation potential for the cultivation of plants under the spaceflight conditions.  相似文献   

4.
The effect of viral infection on photosynthesis was investigated in Nicotiana benthamiana Gray plants infected with different strains of pepper and paprika mild mottle viruses (PMMoV and PaMMoV) and chimeric viral genomes derived from them. In both symptomatic and asymptomatic leaves of virus-infected plants, photosynthetic electron transport in photosystem II (PSII) was reduced. In all cases analyzed, viral infection affected the polypeptide pattern of the oxygen-evolving complex (OEC) in thylakoid membranes. The levels of both the 24 and 16 kDa proteins were reduced to a differing extent when compared with the levels in healthy control. This loss of the OEC extrinsic proteins affected the oxygen evolution rates of thylakoid membranes and leaves from infected plants. Additionally, viral coat protein (CP) was found associated with the chloroplasts and the thylakoid membranes of the infected plants. The CP accumulation level was dependent upon both the post-infection time and the virus analyzed, but independent of the CP itself since hybrid viruses did not behave as their parental viruses with the same CP, with respect to PSII inhibition, CP accumulation rates and OEC protein levels. Modulated chlorophyll (Chl) fluorescence and oxygen evolution measurements carried out in both types of leaves showed that the quantum yield of PSII electron transport was diminished in infected plants with respect to those of control plants. The decrease in electron transport efficiency was mainly caused by a reduction in the fraction of open reaction centers. The infected plants also showed a reduction in the efficiency of excitation capture in PSII by photoprotective thermal dissipation of excess excitation energy.  相似文献   

5.
Migge  A.  Kahmann  U.  Fock  H.P.  Becker  T.W. 《Photosynthetica》1999,36(1-2):107-116
Air-grown tobacco (Nicotiana tabacum L.) plants were transferred for one week into a low oxygen atmosphere (2 kPa O2, LO) to study both immediate and long-term effects of the suppression of photorespiration on net photosynthetic rate (PN), plant morphology, and chloroplast ultrastructure. The PN and the leaf conductance for CO2 increased upon exposure of attached tobacco leaves to LO. These results may suggest that under LO, external CO2 is used to consume the radiant energy normally utilized in photorespiration by net CO2 assimilation at the expense of an increased rate of transpiration. The increase in the coefficient of nonphotochemical fluorescence quenching indicates that under LO, (surplus) radiant energy is also dissipated as heat. Prolonged LO-treatment of tobacco resulted in a decrease in the PN (measured in air) and in a reduction in the number of starch grains in the chloroplasts. Concomitantly, large lipid globuli appeared in the chloroplasts and the distance between the thylakoids forming the grana decreased. These changes in the ultrastructure of chloroplasts may have contributed to the decline in the PN. The LO-treated plants were considerably smaller than the control plants maintained in air. This appears to have resulted from a reduction in the rate of leaf area expansion at the expense of an increase in the specific mass of the leaves. This long-term response to LO-treatment may allow the plants to conserve water. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
We investigated the role that manganese superoxide dismutase (MnSOD), an important antioxidant enzyme, may play in the drought tolerance of rice. MnSOD from pea (Pisum sativum) under the control of an oxidative stress-inducible SWPA2 promoter was introduced into chloroplasts of rice (Oryza sativa) by Agrobacterium-mediated transformation to develop drought-tolerant rice plants. Functional expression of the pea MnSOD in transgenic rice plants (T1) was revealed under drought stress induced by polyethylene glycol (PEG) 6000. After PEG treatment the transgenic leaf slices showed reduced electrolyte leakage compared to wild type (WT) leaf slices, whether they were exposed to methyl viologen (MV) or not, suggesting that transgenic plants were more resistant to MV- or PEG-induced oxidative stress. Transgenic plants also exhibited less injury, measured by net photosynthetic rate, when treated with PEG. Our data suggest that SOD is a critical component of the ROS scavenging system in plant chloroplasts and that the expression of MnSOD can improve drought tolerance in rice.  相似文献   

7.
Photosynthetic carbon assimilation by isolated chloroplasts and its associated oxygen evolution were measured simultaneously in a single simplified reaction mixture. Each showed an initial lag prior to the attainment of the maximal rate and the photosynthetic quotient was unity during the period of illumination. Following illumination an oxygen uptake was observed in the dark which was not accompanied by any net release of newly fixed carbon dioxide.  相似文献   

8.
Anatomical and physiological leaf characteristics and biomass production of Fatsia japonica plants were studied. Plants were grown in a growth chamber at 300 μmol m-2 s-1 (high light) and 50 μmol m-2 s-1 (low light) photosynthetic photon flux density. Plants grown under high light showed a net maximum photosynthetic rate 44% higher than plants grown under low light; the light compensation point and the light saturation point were also higher in high-light plants. Photosynthetic oxygen evolution in isolated chloroplasts was about 40% higher in high-light plants. However, chlorophyll content on a dry weight basis, on a leaf area basis, and per chloroplast was greater in plants grown under low light. Leaf thickness in high-light plants was 13% higher than in low-light plants. The number of chloroplasts was 30% higher in high-light leaves, while chloroplast size was only slightly higher. Chloroplast ultrastructure was also affected by light. Leaf dry weight, leaf area, and biomass production per plant were drastically reduced under low light. Thus, F. japonica is a plant that is able to acclimate to different photosynthetic photon flux density by altering its anatomical and physiological characteristics. However, low-light acclimation of this plant has a considerable limiting effect on biomass production.  相似文献   

9.
Two cycles of photosynthetic control have been observed in isolated spinach chloroplasts in the presence of lipophilic class III electron acceptors, which may accept electrons at PS II. ADPO ratios of 0.8 to 0.9 were recorded;rates of oxygen evolution were stimulated by phosphorylating reagents and uncouplers. Addition of the plastoquinone antagonist DBMIB decreased photosynthetic control, oxygen evolution and photophosphorylation. We believe that there is a coupling site associated with PSII which can be rate limiting. Comparison of the P2e ratios observed with class I and class III electron acceptors leads us to propose that more than 0.6 and possibly approaching one molecule of ATP can be formed for every pair of electrons transported from water to PSII acceptors.  相似文献   

10.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

11.
12.
13.
本研究检测了与盐芥(Ghellungiella halophila)和拟南芥(Arabidopsis thaliana)光合作用相关的叶绿素、净光合速率(photosynthetic rate, Pn)、气孔导度(stomatal conductance, Gs)、胞间隙CO2浓度以及叶绿素荧光参数等指标, 观察到随着NaCl浓度逐渐增加, 盐芥的叶绿素a/b值(Chl a/Chl b)、类胡萝卜素/总叶绿素值(Car/Chl)显著高于拟南芥, 且二比值变化幅度较小并保持较高水平。盐胁迫下拟南芥净光合速率下降、气孔导度下降和胞间CO2浓度减小。气孔因素是引起拟南芥光合能力下降的主要因素。叶绿素荧光参数的变化表明, 50-200 mmol.L-1 NaCl降低拟南芥叶绿体对光能的吸收能力, 而且降低叶绿体的光化学活性, 使电子传递速率和光能转化效率大幅度下降,造成光能转化为化学能的过程受阻,进一步加剧了光合放氧和碳同化能力的降低。而50-200 mmol.L-1 NaCl 胁迫没有使盐芥的光合作用受到不良影响。  相似文献   

14.
Glycerate 3-phosphate-dependent O2 evolution was measured in intact chloroplasts in the absence of CO2. At all concentrations of added glycerate 3-phosphate oxygen evolution ceased before stoichiometric amounts of oxygen were evolved. The inhibition of glycerate 3-phosphate-dependent-O2 evolution increased with increasing concentrations of substrate added. A similar response was observed in chloroplasts treated with KCN which inhibits ribulose-1,5-bisphosphate carboxylase-oxygenase. Oxygen uptake via the oxygenase activity of this enzyme is therefore not the cause of the discrepancy in stoichiometry of oxygen release in this system. The addition of NaHCO3 to chloroplasts in which oxygen evolution was inhibited by glycerate 3-phosphate caused an immediate sustained rate of oxygen evolution in the absence of KCN but not with KCN present. Simultaneous measurements of chlorophyll a fluorescence showed that qQ remained oxidized, although net O2 evolution had ceased. As O2 evolution decreased, qE and delta pH increased. Upon the addition of the NaHCO3, QA became more oxidized while delta pH and qE were decreased, suggesting that the inhibition of electron transport at high glycerate 3-phosphate concentrations was mediated by photosynthetic control via delta pH. However, the levels of ATP, ADP, ribulose 1,5-bisphosphate, and Pi concentrations and ATP/ADP ratio. The stromal glycerate 3-phosphate content declined upon illumination until O2 evolution ceased. At this time a constant stromal glycerate 3-phosphate concentration of 8-10 mM was maintained while net import of glycerate 3-phosphate into the stroma had virtually ceased. The stromal triosephosphate content remained at a constant low level throughout but the glycerate 3-phosphate level increased slightly after addition of NaHCO3. The data provided by the measurements of thylakoid reactions and stromal metabolites suggest that photosynthetic electron transport is tightly coupled to the requirements of the stroma for ATP and NADPH. Glycerate 3-phosphate reduction requires much less ATP than the operation of the complete Benson-Calvin cycle since the stoichiometry of ATP and NADPH utilization is reduced to 1:1. We conclude that thylakoid electron flow is not sufficiently flexible to maintain NADPH and ATP production in the ratio of 1:1. This situation will favor overenergization of the thylakoid membrane, increased leakiness of protons, increased electron drainage to O2, and result in progressive inhibition of noncyclic electron flow.  相似文献   

15.
墨兰幼叶和成熟叶不同部位叶绿体超微结构和光合作用   总被引:11,自引:1,他引:10  
墨兰试管苗植株成熟叶片叶绿体基粒较发达,类囊本膜垛叠较紧密。幼叶叶绿体中少有亲锇颗粒,成熟叶的叶绿体中往往既有亲锇颗粒又有淀粉粒。幼叶中基粒数目比成熟叶的少,叶绿体也比成熟叶的小。幼叶的光合放氧速率比成熟叶的低。幼叶中叶尖部叶绿体最大而叶基部最小,但叶尖部的光合放氧速率比叶基部小。成熟叶中叶绿体大小及光合放氧速率区别不明显。通过对各部位叶绿素含量的测定发现,叶绿素含量与光合放氧速率之间没有正相关性  相似文献   

16.
用10 mmol·L-1 CaCl2溶液预处理灌浆期小麦叶片,以水预处理为对照,然后将预处理植株进行高温强光(35 ℃,1600 μmol·m-2·s-1)胁迫,测定胁迫处理过程中小麦旗叶光合电子传递速率、净光合速率、叶绿素荧光参数及D1蛋白的变化,以研究外源Ca2+对高温强光胁迫下小麦叶片类囊体膜D1蛋白磷酸化和PSⅡ功能的影响.结果表明:CaCl2溶液预处理使小麦叶片在高温强光逆境下PSⅡ反应中心发生可逆失活,有效抑制了高温强光下D1蛋白的净降解,保持了较高的D1蛋白磷酸化水平,暗恢复后PSⅡ反应中心活性迅速恢复,全链电子传递速率和PSⅡ电子传递速率恢复至对照水平,维持了较高的PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率(ФPSⅡ)、光化学猝灭系数(qP)和净光合速率(Pn).表明外源Ca2+通过调节小麦叶绿体D1蛋白的周转,促进了PSⅡ的正常运转,减轻了高温强光胁迫对叶片光合机构的损伤.  相似文献   

17.
Principles of regulation on different levels of photosynthetic apparatus are discussed. Mathematical models of isolated photosynthetic reaction centers and general system of energy transduction in chloroplast are developed. A general approach to model these complex metabolic systems is suggested. Regulatory mechanisms in plant cell are correlated with the different patterns of fluorescence induction curve at different internal physiological states of the cells and external (environmental) conditions. Light regulation inside photosynthetic reaction centers, diffusion processes in thylakoid membrane, generation of transmembrane electrochemical potential, coupling with processes of CO2 fixation in Calvin Cycle are considered as stages of control of energy transformation in chloroplasts in their connection with kinetic patterns of fluorescence induction curves and other spectrophotometric data.  相似文献   

18.
以欧美107杨(Populus×euramericana ‘Neva',Wt)和转拟南芥液泡膜Na~+/H~+逆向转运蛋白基因AtNHX1的欧美107杨新品系(Tr) 幼苗为材料,研究了高低度盐胁迫对两品系幼苗光合色素含量、光合参数和叶绿体超微结构的影响,以阐明转AtNHX1基因杨树的耐盐性与其光合作用及叶绿体结构之间的关系.结果表明:(1)盐处理后,两品系叶片叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率和气孔导度均下降,且高盐度处理下降幅度更大;同等盐度处理下,Tr品系叶片叶绿素含量、净光合速率和气孔导度的下降幅度显著低于Wt品系,且在高盐度处理间差异更大;两品系杨树叶片P_n下降的原因在低盐处理时以气孔限制为主,而在高盐下则是气孔限制和非气孔限制共同作用的结果.(2)盐胁迫对T_r 品系叶片叶绿体超微结构的影响较轻,其在高盐下仍保持了较好的内部结构;盐胁迫Wt品系叶绿体则缩皱成球形,内部结构趋向简单,以至解体,脂质球显著增多.可见,盐胁迫导致杨树叶绿体结构破坏而引起叶绿体色素含量下降,最终降低其光合作用效率;同等盐度胁迫下,转AtNHX1基因品系叶片保持了较完整的叶绿体超微结构、更高的叶绿素含量,能维持较好的光合状态,从而表现出较高的耐盐能力.  相似文献   

19.
Water stress inhibited the photosynthetic O2 evolution rate of wheat leaves. It was shown that water stress decreased the electron transport rate, the activities of photophosphorylation and, coupling factor, and, the synthesis of ATP in chloroplasts. PS Ⅱ electron transport was more senstitive to water stress than PS Ⅰ. The reduction in photophosphorylation activity might be the results of reduction in electron transport rate and coupling factor activity, as well as the uncoupling effect of water stress on chloroplasts. The uncoupling effect could be due to the inhibition of light induced proton translocation in chloroplasts.  相似文献   

20.
Dark-grown radish seedlings (Raphanus sativus L.) were sprayed with 10-3 mol·l-1 2,4-dichlorophenoxyacetic acid and then were exposed to a 14:10 light: dark cycle. Cotyledon samples from these seedlings and unsprayed controls were taken for electron microscopy, chlorophyll determinations, and photosynthetic rate measurements at regular intervals for 72 h. A normal development of etioplasts to chloroplasts with formation of typical grana-fret work system was observed in the control cotyledons. The chloroplasts in the 2,4-D-treated cotyledons showed changes in the organization of the grana thylakoids; these thylakoids being more appressed to each other than in the controls. The chlorophyll content of treated plants was less than that of controls but the rate of chlorophyll biosynthesis was unaffected. The photosynthetic rate/mg chlorophyll was considerably higher for treated plants suggesting that 2,4-D treatment resulted in decreased size of the photosynthetic unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号