首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic investigation of protein patterns of Brassica rapa L. ovules and seeds from plants grown under clinorotation and in the laboratory control was carried out. Ovules at different stages (7 and 18 days after pollination) and mature seeds were analyzed. Polymorphism of seed storage proteins of B. rapa was taken into consideration in analysis of changes in ovule protein patterns under clinorotation. The appearance of a protein component in the region of about 43 kDa was detected in protein patterns of 7-day-old and 18-day-old ovules in the clinostat variants. Under altered gravity, in 18-day-old ovules, the appearance of a protein in the region of about 70 kDa was also revealed. The appearance of the protein component with the similar mobility (about 43 kDa) in ovules of different age from plants grown at clinorotation suggests that synthesis of this protein may be associated with the plant response to altered gravity. However, the investigation of the nature of this protein and its role requires further research to rule out its appearance because of genotypic differences between ovules of the control and experimental variants.  相似文献   

2.
The results of study of embryo development in B. rapa plants as well as rate and character of nutrient substance accumulation in their cells under slow horizontal clinorotation and the laboratory control were presented. Significant similarity in the peculiarities of embryo differentiation and character of nutrient substance accumulation in both variants was established. The cases of different deviations during embryo differentiation, quantity of reserve nutrient substances, and the rate of their accumulation in the cells were revealed under clinorotation in comparison with the laboratory control.  相似文献   

3.
Organization of tubulin cytoskeleton in epidermis and cortex cells in different root growth zones in Brassica rapa L. 6-day-old seedlings under clinorotation has been investigated. It was shown that changes in cortical microtubules orientation occur only in the distal elongation zone. In control, cortical microtubule arrays oriented transversely to the root long axis. Whereas under clinorotation an appearance of shorter randomly organized cortical microtubules was observed. Simultaneously, a significant decrease in a cell length in the central elongation zone under clinorotation was revealed. It is suggested that the decline of anisotropic growth, typical for central elongation zone cells, is connected with cortical microtubules disorientation under clinorotation.  相似文献   

4.
Using confocal microscopy the organization of tubulin cytoskeleton including endoplasmic and cortical microtubules (CMTs) has been studied in epidermal and cortical cells of the different growth zones of main root of Brassica rapa L. 6-days-old seedlings in control conditions and under clinorotation. It was shown that changes in CMTs orientation occured only in the distal elongation zone (DEZ). In the control, CMT arrays oriented transversely to the root long axis. Under clinorotation appearance of the shorter randomly organized CMTs was observed. Simultaneously, a significant decrease in the cell length in the central elongation zone (CEZ) under clinorotation was detected. It is suggested that the decline of anisotropic growth typical for CEZ cells is connected with CMTs disorientation under clinorotation.  相似文献   

5.
The effect of horizontal clinorotation on the dynamics of the accumulation of the main photosynthetic pigments in the greening of 6-day-old etiolated barley seedlings has been studied. The content of protochlorophillide, the direct precursor of chlorophyll a, in clinorotated seedlings in the dark was 9–20% lower than in the control group. After exposure of barley seedlings to light for 12 h under clinorotation, chlorophyll accumulation lagged behind the control by 45% and reached the control value after 48–72 h. The total content of carotenoids increased many fold during greening; at the first stage the carotenoid level in clinorotated seedlings was less than in the control. The synthesis rates of δ-aminolevulinic acid and δ-aminolevulinate dehydratase activity in clinorotated seedlings were slower than in the control after 24 h of greening and after 72 h of greening reaching the control values. The activity of Mg-protoporphyrin IX chelatase catalyzing the incorporation of Mg ions in the structure of chlorophyll a, did not change when exposed to clinorotation. The results we obtained show inhibition of the initial stages of chlorophyll biosynthesis in the conditions of simulated microgravity. The light, to a certain extent, decreases the negative effect of microgravity on the formation of the photosynthetic apparatus in plants.  相似文献   

6.
Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.  相似文献   

7.
8.
Summary The growth and development of white spruce somatic embryos was followed from the filamentous immature to the mature cotyledonary embryo stage. Histochemical examination of the various stages of embryo development showed that lipids, proteins, and polysaccharides were produced to varying degrees during the process. During early stages (1 to 2 wk on ABA), mostly polysaccharide was produced, whereas during later stages, polysaccharides, lipids, and protein accumulated. Electron microscopy indicated that lipid deposition in somatic embryos started during the first week after transfer to ABA-containing medium. Deposition of the storage products began at the basal end of the embryonal mass and within the proximal zone of the suspensors. Accumulation continued to the peripheral regions and then inward toward the cortex of the developing embryo. In all cases, polysaccharide accumulated first, followed by lipid and lastly, protein. Quantitatively, cotyledonary stage somatic embryos had less lipid and protein and more starch when compared to zygotic embryos at the same developmental stage. Total protein profiles elucidated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the majority of proteins were similar in zygotic and somatic embryos. Prominent protein bands were found at 30, 20, 19.5, 15, 14.4, 12, and 10 Kd. However, protein bands at 40, 15, and 12 Kd in total protein from somatic embryos were either absent or highly underexpressed.  相似文献   

9.
Accumulation of proline, activities of peroxidase (POX), catalase (CAT), phenylalanine ammonia lyase (PAL) and malate dehydrogenase (MDH) were studied during different developmental stages of somatic embryos in chickpea. Callus cultures that did not form somatic embryos served as control. While increased levels of proline and POX activity were noticed in globular stages of embryos, CAT activity increased during early and late heart-shaped embryo formation indicating tissue-specific activation of these enzymes. The activity of PAL reached a peak during torpedo and cotyledonary stages of embryo development. On the other hand, MDH activity enhanced during the germination of somatic embryos inferring more requirement of energy during this stage. Electrophoretic (sodium dodecyl sulfate polyacrylamide gel electrophoresis) pattern of proteins revealed that ten bands are associated with non-embryogenic tissues, whereas 11 bands with globular, heart, torpedo and cotyledonary stages of embryo development and nine bands during the germination stage of embryos. Two extra stage-specific protein bands with molecular masses of 16 and 18 kDa appeared during globular, heart, torpedo, and cotyledonary stages. But, these bands disappeared during germination of embryos and are absent in non-embryogenic cultures. This study thus may help in the identification of proteins and the role of above enzymes during different developmental stages of somatic embryo induction and their maturation in a recalcitrant leguminous crop plant chickpea.  相似文献   

10.
E. Maquoi  D. E. Hanke  R. Deltour 《Protoplasma》1993,174(3-4):147-157
Summary A comparison of embryos, cultured for increasing periods of time with and without abscisic acid (ABA), was undertaken to investigate, at the ultrastructural level, the influence of this growth regulator on the maturation of rapeseed (Brassica napus) somatic embryos. In the absence of ABA, the embryos germinated precociously while lipid bodies (LB), which were not numerous, soon degraded, as revealed by a depletion process associated with the appearance of morphologically mature glyoxysomes and an increase in the number of mitochondria. Moreover, a lack of protein bodies indicated that storage protein accumulation was not initiated under these conditions. On the contrary, the addition of ABA (10 M) induced marked modification of embryo metabolism. Indeed, ABA completely prevented precocious embryo germination and inhibited lipid reserve catabolism. Moreover, the formation of small vacuoles and proliferation of rough endoplasmic reticulum in their vicinity suggested the onset of storage protein accumulation. After 15 days in the presence of ABA, the embryos contained abundant lipid and protein bodies. Nevertheless, these somatic embryos were not exactly the same as their mature zygotic counterparts since differences were found in chloroplasts, amyloplasts, and nuclear structures. These observations suggest that additional factors might be required to obtain fully mature somatic embryos.Abbreviations ABA abscisic acid - ABM ABA medium - BM basal medium - LB lipid bodies - MS Murashige and Skoog (1962) - PB protein bodies - RER rough endoplasmic reticulum  相似文献   

11.
Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.  相似文献   

12.
Increased expression of the auxin-inducible gene PsIAA4/5 was observed in the elongated side of epicotyls in early growth stages of etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown in a horizontal or an inclined position under 1 g conditions. Under simulated microgravity conditions on a 3D clinostat, accumulation of PsIAA4/5 mRNA was found throughout epicotyls showing automorphosis. Polar auxin transport in the proximal side of epicotyls changed when the seedlings were grown in a horizontal or an inclined position under 1 g conditions, but that under clinorotation did not, regardless of the direction of seed setting. Accumulation of PsPIN1 and PsPIN2 mRNAs in epicotyls was affected by gravistimulation, but not by clinorotation. Under 1 g conditions, auxin-transport inhibitors made epicotyls of seedlings grown in a horizontal or inclined position grow toward the proximal direction to cotyledons. These inhibitors led to epicotyl bending toward the cotyledons in seedlings grown in an inclined position under clinorotation. Polar auxin transport, as well as growth direction, of epicotyls of the agravitropic mutant ageotropum did not respond to various gravistimulation. These results suggest that alteration of polar auxin transport in the proximal side of epicotyls regulates the graviresponse of pea epicotyls.  相似文献   

13.
Developing Brassica napus embryos are primarily concerned with the accumulation of storage products, namely oil, starch and protein. The presence of fatty acid catabolic pathways in the background of this biosynthetic activity was investigated. Enzymes involved in the process of lipid mobilization, such as malate synthase and isocitrate lyase, are detectable towards the late stages of embryo development. [(14)C]Acetate feeding experiments also reveal that fatty acid catabolism becomes increasingly functional as the embryo matures.  相似文献   

14.
In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.  相似文献   

15.
Citrus exhibits polyembryonic seed development, an apomictic process in which many maternally derived embryos arise from the nucellus surrounding the developing zygotic embryo. Citrus seed storage proteins were used as markers to compare embryogenesis in developing seeds and somatic embryogenesis in vitro. The salt-soluble, globulin protein fraction (designated citrin) was purified from Citrus sinensis cv Valencia seeds. Citrins separated into two subunits averaging 22 and 33 kD under denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A cDNA clone was isolated representing a citrin gene expressed in seeds when the majority of embryos were at the early globular stage of embryo development. The predicted protein sequence was most related to the globulin seed storage proteins of pumpkin and cotton. Accumulation of 33-kD polypeptides was first detected in polyembryonic Valencia seeds when the majority of embryos were at the globular stage of development. Somatic Citrus embryos cultured in vivo were observed to initiate 33-kD polypeptide accumulation later in embryo development but accumulated these peptides at only 10 to 20% of the level observed in polyembryonic seeds. Therefore, factors within the seed environment must influence the higher quantitative levels of citrin accumulation in nucellar embryos developing in vivo, even though nucellar embryos, like somatic embryos, are not derived from fertilization events.  相似文献   

16.
The results of study of Brassica embryo differentiation and reserve nutrient substance accumulation in the seeds were represented. Near resemblance of the spaceflight and around control embryo development was revealed. Different character of the reserve substance accumulation was noted, despite of the morphologic similarity in seeds produced in spaceflight and on the ground. It allows to consider spaceflight embryos morphologically more younger compared to the ground control.  相似文献   

17.
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.  相似文献   

18.
Starch metabolism in developing embryos of oilseed rape   总被引:7,自引:0,他引:7  
The aim of this work was to characterise the metabolism of starch in developing embryos of oilseed rape (Brassica napus L. cv. Topaz). The accumulation of starch in embryos in siliques which were darkened or had been exposed to the light was similar, suggesting that the starch is synthesised from imported sucrose rather than via photosynthesis in the embryo. Starch content and the activities of plastidial enzymes required for synthesis of starch from glucose 6-phosphate (Glc6P) both peaked during the early-mid stage of cotyledon development (i.e. during the early part of oil accumulation) and then declined. The mature embryo contained almost no starch. The starch-degrading enzymes α-(EC 3.2.1.1) and β-amylase (EC 3.2.1.2) and phosphorylase (EC 2.4.1.1) were present throughout development. Most of the activity of these three enzymes was extraplastidial and therefore unlikely to be involved in starch degradation, but there were distinct plastidial and extraplastidial isoforms of all three enzymes. Activity gels indicated that distinct plastidial isoforms increase during the change from net synthesis to net degradation of starch. Plastids isolated from embryos at stages both before and after the maximum starch content could convert Glc6P to starch although the rate was lower at the later stage. The results are consistent with the idea that starch synthesis and degradation occur simultaneously during embryo development. The possible roles of transient starch accumulation during embryo development are discussed. Received: 15 May 1997 / Accepted: 30 May 1997  相似文献   

19.
In order to evaluate the quality of Prunus avium somatic embryos, a comparison of lipid composition between somatic and zygotic embryos was undertaken. In both zygotic and somatic embryos, neutral glycerolipids (NL) and phosphatidylcholine (PC) were the 2 major lipid classes. The content of NL increased over the course of development in zygotic embryos and reached 490 μg per embryo, while the PC content reached 100 μg per embryo. However, the contents of NL and PC in somatic embryos were similar to immature zygotic embryos at stage 3. Fatty acid composition of NL from both zygotic and somatic embryos revealed more unsaturated than saturated fatty acids. In somatic embryos, the saturated/unsaturated fatty acid ratios of NL and phosphatidylinositol (PI) were similar to those observed in immature zygotic embryos up to stage 6. Conversely, in phosphatidylethanolamine (PE) the ratio was similar to the ratio observed in mature zygotic embryos, at stage 7. Histological studies confirmed the immaturity of somatic embryos: no protein or lipid reserves were observed in the vacuolated cotyledonary cells. Maturation of somatic embryos was improved by a 2-month cold period. In cold-treated somatic embryos, both NL and PC increased to levels comparable to those observed in mature zygotic embryos, and the PE content reached 10 times the level of that in mature zygotic embryos. The cold treatment induced a large increase in the saturated/unsaturated fatty acid ratio in phospholipids but only a slight increase in that of neutral glycerolipids. Histological studies revealed a lipid accumulation at cellular level. Lipid bodies surrounded by protein bodies were observed in cotyledonary cells of cold-treated somatic embryos. Furthermore, the cold-treated somatic embryos developed into plantlets with a frequency of 14%, whereas no development was obtained with the non-treated somatic embryos.  相似文献   

20.
家蚕催青后期胚胎蛋白质双向电泳图谱分析   总被引:12,自引:1,他引:11  
采用蛋白质双向电泳技术分析了家蚕Bombyx mori催青后期胚胎蛋白质图谱的变化。研究发现: 在头胸分化期(戊3)、反转期(己1)、毛瘤发生期(己2)、点青期(己3)、转青期(己4)和孵化期(己5)胚胎蛋白质的双向电泳图谱中共检测到209个特异蛋白斑点,其中己3和己4两个胚胎出现的特异蛋白斑点数在整个催青期胚胎中为最多,分别达55和77个。与催青前期胚胎出现的特异蛋白斑点变化规律相似,这些特异蛋白斑点大多也是在随后邻近的胚胎发育中消失。推测这些特异蛋白可能与相应胚胎的形体特征发育有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号