首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin is a widely used anthracycline anticancer agent. Its use may cause cardiomyopathy: in fact, the development of cumulative dose-related cardiotoxicity forms the major limitation of clinical doxorubicin use. We therefore searched for protective agents that combine iron-chelating and oxygen radical-scavenging properties. Moreover, any novel protector should not interfere with the cytostatic activity of doxorubicin. After extensive in vitro screening we found that flavonoids could serve this purpose. In particular 7-monohydroxyethylrutoside almost completely protected against the negative inotropic action of doxorubicin in the electrically paced mouse left atrium model. In vivo it gave full protection at 500 mg/kg intraperitoneally against the doxorubicin-induced ST-interval lengthening in the ECG. Moreover, this protector did not influence the antitumor effect of doxorubicin either in vitro using the human ovarian cell lines A2780 and OVCAR-3 and the human breast cancer cell line MCF-7 or in vivo in A2780 and OVCAR-3 subcutaneous xenografts in nude mice. Comparison of various iron chelators suggest that iron, in contrast to the general assumption, might not play a crucial role in the oxidative stress-induced toxicity of doxorubicin. Moreover, incubation of vascular endothelial cells with doxorubicin produced overexpression of adhesion molecules, which could be inhibited by 7-monohydroxyethylrutoside. From a study in human volunteers, we conclude that an intravenous dose of 1500 mg/m2 of 7-monohydroxyethylrutoside is feasible and is safe to be investigated as protection against doxorubicin-induced cardiotoxicity.  相似文献   

2.
Doxorubicin (Dox) is an effective chemotherapeutic agent, however, its use is limited by cardiotoxicity. The mechanisms causing cardiotoxicity have not been clearly elucidated, but known to involve, at least in part, oxidative stress, mitochondrial dysfunction and apoptosis. More recently, it has been suggested that dysregulation of autophagy may also play an important role in Dox-induced cardiotoxicity. Autophagy has dual functions. Under physiological conditions, autophagy is essential for optimal cellular function and survival by ridding the cell of damaged or unwanted proteins and organelles. Under pathological conditions, autophagy may be stimulated in order to protect the cell from stress stimuli or, alternatively, to contribute to cell death. Thus, appropriate regulation of autophagy can be a matter of life or death. The role of autophagy in Dox-induced cardiotoxicity has recently been explored, however, conflicting reports on the effects of Dox on autophagy and its role in cardiotoxicity exist. Most, but not all, of the studies conclude that Dox upregulates cardiac autophagy and contributes to the pathogenesis of Dox-induced toxicity. Dox may induce autophagy by suppressing the expression of GATA4 and/or S6K1, which may directly or indirectly regulate expression of essential autophagy genes such as Atg12, Atg5, Beclin1 and Bcl-2. Interestingly, the Dox-induced autophagic response may be species specific as Dox treatment has been shown to stimulate autophagy in rat models, but suppress autophagy in mouse models. Additional studies will elucidate this possibility.  相似文献   

3.
Doxorubicin is a chemotherapeutic drug used for the treatment of various malignancies; however, patients can experience cardiotoxic effects and this has limited the use of this potent drug. The mechanisms by which doxorubicin kills cardiomyocytes has been elusive and despite extensive research the exact mechanisms remain unknown. This review focuses on recent advances in our understanding of doxorubicin induced regulated cardiomyocyte death pathways including autophagy, ferroptosis, necroptosis, pyroptosis and apoptosis. Understanding the mechanisms by which doxorubicin leads to cardiomyocyte death may help identify novel therapeutic agents and lead to more targeted approaches to cardiotoxicity testing.Subject terms: Mechanisms of disease, Cardiomyopathies  相似文献   

4.
The therapeutic usefulness of doxorubicin (Dox), an anthracycline antibiotic used as an anticancer agent, is limited by its cardiotoxicity. Dox-induced cardiotoxicity is mainly attributed to accumulation of reactive oxygen species and interaction of Dox with cellular iron metabolism. The present study investigated the effects of the iron chelator deferiprone (Def) against Dox-induced cardiotoxicity in rats. Dox (15?mg/kg) was injected intraperitoneally as a single dose, and Def (10?mg/kg) was administered orally for 10?days. Dox showed cardiotoxicity as evidenced by increased heart rate, elevated ST segment, prolonged QTc interval, and increased T wave amplitude. In addition, Dox enhanced aconitine cardiotoxicity by decreasing its dose, producing ventricular tachycardia. Administration of Def significantly attenuated Dox-induced electrocardiographic changes. Cardiotoxicity of Dox was confirmed biochemically by a significant elevation in serum creatine kinase-MB and lactate dehydrogenase activities as well as by myocardial malondialdehyde and reduced glutathione contents. Moreover, Dox caused a significant decrease in myocardial superoxide dismutase activity. Administration of Def significantly attenuated the biochemical changes. These results suggest that Def might be a potential cardioprotective agent against Dox-induced cardiotoxicity.  相似文献   

5.
The present study was designed to explore the protective effects of melatonin and its analogs, 6-hydroxymelatonin and 8-methoxy-2-propionamidotetralin, on the survival of doxorubicin-treated mice and on doxorubicin-induced cardiac dysfunction, ultrastructural alterations, and apoptosis in mouse hearts. Whereas 60% of the mice treated with doxorubicin (25 mg/kg ip) died in 5 days, almost all the doxorubicin-treated mice survived when melatonin or 6-hydroxymelatonin (10 mg/l) was administered in their drinking water. Perfusion of mouse hearts with 5 microM doxorubicin for 60 min led to a 50% suppression of heart rate x left ventricular developed pressure and a 50% reduction of coronary flow. Exposure of hearts to 1 microM melatonin or 6-hydroxymelatonin reversed doxorubicin-induced cardiac dysfunction. 8-Methoxy-2-propionamidotetralin had no protective effects on animal survival and on in vitro cardiac function. Infusion of melatonin or 6-hydroxymelatonin (2.5 microg/h) significantly attenuated doxorubicin-induced cardiac dysfunction, ultrastructural alterations, and apoptosis in mouse hearts. Neither melatonin nor 6-hydroxymelatonin compromised the antitumor activity of doxorubicin in cultured PC-3 cells. These results suggest that melatonin protect against doxorubicin-induced cardiotoxicity without interfering with its antitumor effect.  相似文献   

6.
Accumulating evidence shows that obesity is associated with doxorubicin cardiac toxicity in the heart, but the molecular mechanisms that contribute to this pathological response are not understood. Adiponectin is an adipose-derived, cardioprotective factor that is down-regulated in obesity. Here, we investigated the effect of adiponectin on doxorubicin (DOX)-induced cardiotoxicity and assessed the mechanisms of this effect. A single dose of DOX was intraperitoneally injected into the abdomen of adiponectin knock-out (APN-KO) and wild-type (WT) mice. APN-KO mice had increased mortality and exacerbated contractile dysfunction of left ventricle compared with WT mice. APN-KO mice also showed increased apoptotic activity and diminished Akt signaling in the failing myocardium. Systemic delivery of adenoviral vector expressing adiponectin improved left ventricle dysfunction and myocardial apoptosis following DOX injection in WT and APN-KO mice but not in Akt1 heterozygous KO mice. In cultured rat neonatal cardiomyocytes, adiponectin stimulated Akt phosphorylation and inhibited DOX-stimulated apoptosis. Treatment with sphingosine kinase-1 inhibitor or sphingosine 1-phosphate receptor antagonist diminished adiponectin-induced Akt phosphorylation and reversed the inhibitory effects of adiponectin on myocyte apoptosis. Pretreatment with anti-calreticulin antibody reduced the binding of adiponectin to cardiac myocytes and blocked the adiponectin-stimulated increase in Akt activation and survival in cardiomyocytes. Interference of the LRP1/calreticulin co-receptor system by siRNA or blocking antibodies diminished the stimulatory actions of adiponectin on Akt activation and myocyte survival. These data show that adiponectin protects against DOX-induced cardiotoxicity by its ability to promote Akt signaling.  相似文献   

7.
There are increasing concerns related to the cardiotoxicity of doxorubicin in the clinical setting. Recently, melatonin has been shown to exert a cardioprotective effect in various cardiovascular diseases, including cardiotoxic conditions. In this study, we examined the possible protective effects of melatonin on doxorubicin-induced cardiotoxicity and explored the underlying mechanisms related to this process. We found that in vitro doxorubicin treatment significantly decreased H9c2 cell viability and induced apoptosis as manifested by increased TUNEL-positive cells, down-regulation of anti-apoptotic protein Bcl-2, as well as up-regulation of pro-apoptotic protein Bax. This was associated with increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potentials (MMP). In vivo, five weeks of doxorubicin treatment significantly decreased cardiac function, as evaluated by echocardiography. TUNEL staining results confirmed the increased apoptosis caused by doxorubicin. On the other hand, combinational treatment of doxorubicin with melatonin decreased cardiomyocyte ROS and apoptosis levels, along with increasing MMP. Such doxorubicin-melatonin co-treatment alleviated in vivo doxorubicin-induced cardiac injury. Western Blots, along with in vitro immunofluorescence and in vivo immunohistochemical staining confirmed that doxorubicin treatment significantly down-regulated Yes-associated protein (YAP) expression, while YAP levels were maintained under co-treatment of doxorubicin and melatonin. YAP inhibition by siRNA abolished the protective effects of melatonin on doxorubicin-treated cardiomyocytes, with reversed ROS level and apoptosis. Our findings suggested that melatonin treatment attenuated doxorubicin-induced cardiotoxicity through preserving YAP levels, which in turn decreases oxidative stress and apoptosis.  相似文献   

8.
The effect of CardiPro, a polyherbal formulation, with an antioxidant property, has been studied on doxorubicin (DXR)-induced cardiotoxicity in mice. CardiPro (150 mg/kg b.w., twice daily was administered orally for 7 weeks along with four equal injections (each containing 4.0 mg/kg b.w., DXR) intraperitoneally, once weekly (cumulative dose 16 mg/kg). After a 3-week post DXR treatment period, cardiotoxicity was assessed by noting mortality, volume of ascites, liver congestion, changes in heart weight, myocardial lipid peroxidation, antioxidant enzymes and histology of heart. DXR-treated animals showed higher mortality (50%) and more ascites. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Histology of heart of DXR-treated animals showed loss of myofibrils and focal cytoplasmic vacuolization. CardiPro significantly protected the mice from DXR-induced cardiotoxic effects as evidenced by lower mortality (25%), less ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes and minimal damage to the heart histologically. Our data confirm the earlier reports that DXR cardiotoxicity is associated with the free radical-induced tissue damage. Administration of CardiPro, with an antioxidant property, protected the DXR-induced cardiotoxicity in mice.  相似文献   

9.
Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7?/?) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7?/? mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7?/? mice. Furthermore, DOX-treated EC-Atg7?/? mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC.  相似文献   

10.
《Cell Stem Cell》2021,28(12):2076-2089.e7
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

11.
The major factor contributing to doxorubicin (DXR)-induced cardiotoxicity is the insufficiency of antioxidant defense mechanisms. As a model of acute cardiotoxicity with DXR, ten-week-old golden hamsters were given DXR (5 mg/kg) intravenously, and the toxicity was investigated by monitoring ECG changes. Complete A-V block and cardiac arrest on the ECG were observed in DXR-treated hamsters. DXR-induced edema and fragmentation of myofibrils were observed by electron-micrograph. Pretreatment with interleukin-1(10 or 1g/body) 12 or 24 hrs before prevented these changes, but pretreatment with tumor necrosis factor had no effect.Abbreviations DXR doxorubicin - IL-1 interleukin-1 - Mn SOD manganous superoxide dismutase - TNF tumor necrosis factor  相似文献   

12.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

13.
The possible protective effects of resveratrol (RVT) against cardiotoxicity were investigated in Wistar albino rats treated with saline, saline+doxorubicin (DOX; 20 mg/kg) or RVT (10 mg/kg)+DOX. Blood pressure and heart rate were recorded on the 1st week and on the 7th week, while cardiomyopathy was assessed using transthoracic echocardiography before the rats were decapitated. DOX-induced cardiotoxicity resulted in decreased blood pressure and heart rate, but lactate dehydrogenase, creatine phosphokinase, total cholesterol, triglyceride, aspartate aminotransferase and 8-OHdG levels were increased in plasma. Moreover, DOX caused a significant decrease in plasma total antioxidant capacity along with a reduction in cardiac superoxide dismutase, catalase and Na+,K+-ATPase activities and glutathione contents, while malondialdehyde, myelopreoxidase activity and the generation of reactive oxygen species were increased in the cardiac tissue. On the other hand, RVT markedly ameliorated the severity of cardiac dysfunction, while all oxidant responses were prevented; implicating that RVT may be of therapeutic use in preventing oxidative stress due to DOX toxicity.  相似文献   

14.
A series of 3,7-disubstituted-2(3',4'-dihydroxyphenyl) flavones has been studied as potential cardioprotective agents in doxorubicin antitumor therapy. The influence of substituents on the 3 and 7 position of the flavone nucleus on antioxidant activity cytotoxicity and cardioprotective properties was explored to improve the activity of our lead compound 7-monohydroxyethylrutoside. In the protection against Fe(2+)/vitamin C-induced microsomal lipid peroxidation (LPO assay), IC(50) values ranged from 0.2 to 37 microM. In general, the 3-substituted flavones were the most potent compounds in this assay. The cytotoxicity of the new compounds was tested (up to 250 microM) in hepatocytes. LDH leakage ranged from 2.6-29.2%, whereas the GSH concentrations decreased to 87.3-41.3%. Only four compounds out of this series protected the isolated mouse left atrium against doxorubicin-induced toxicity. Because of the positive inotropic effect of 8d (N-(3-(3',4'-dihydroxyflavon-7-yl)oxypropyl)-N,N,N-trimethylammonium chloride) and 10c (3-hydroxyethoxy-7,3',4'-trihydroxyflavone) on the atrium, compounds 9i (3',4'-dihydroxy-3-glucosylflavone) and 10d (N-(3-(7,3',4'-trihydroxyflavon-3-yl)oxypropyl)-N,N,N-trimethylammonium chloride) were selected to be evaluated as cardioprotective agents in vivo.  相似文献   

15.
The present experiments were designed to evaluate the effects of pifithrin-alpha (PFT-alpha), which is a p53 inhibitor, on doxorubicin (DOX)-induced apoptosis and cardiac injury. Administration of DOX (22.5 mg/kg ip) in mice upregulated the mRNA levels of Bax and MDM2, whereas PFT-alpha attenuated those levels when administered at a total dose of 4.4 mg/kg at 30 min before and 3 h after DOX challenge. DOX treatment led to an upregulation of p53 protein levels, which was preceded by elevated levels of phosphorylated p53 at Ser15. PFT-alpha had no effect on the level of p53 or its phosphorylated form. The protein levels of Bax and MDM2 were elevated by DOX and attenuated by PFT-alpha. DOX gave rise to increased apoptosis-positive nuclei in cardiac cells, elevated serum creatine phosphokinase, ultrastructural alterations, and cardiac dysfunction. PFT-alpha offered protection against all of the aforementioned changes. Finally, PFT-alpha did not interfere with the antitumor potency of DOX. This study demonstrates that PFT-alpha effectively inhibits DOX-induced cardiomyocyte apoptosis, which suggests that PFT-alpha has the potential to protect cancer patients against DOX-induced cardiac injury.  相似文献   

16.
Oxidative stress and cardiomyocyte apoptosis contributed to the progression of doxorubicin (Dox)-induced cardiotoxicity. Recent studies identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle-enriched microRNA that functioned as a key regulator in stress-induced cardiac injury. The present study aimed to investigate the role and possible mechanism of miR-22 on Dox-induced oxidative stress and cardiomyocyte apoptosis. Mice were exposed to reduplicative injections of Dox (i.p., 4 mg/kg) weekly for consecutive 4 weeks to generate Dox-induced cardiotoxicity. Herein, we found that miR-22 level was significantly increased in murine hearts subjected to chronic Dox treatment. MiR-22 inhibition attenuated oxidative stress and cardiomyocyte apoptosis in vivo and in vitro, thereby preventing Dox-induced cardiac dysfunction. Mechanistically, we observed that miR-22 directly bound to the 3′-UTR of Sirt1 and caused SIRT1 downregulation. Conversely, miR-22 antagomir upregulated SIRT1 expression and SIRT1 inhibitor abolished the beneficial effects of miR-22 antagomir. In conclusion, miR-22 inhibition prevented oxidative stress and cardiomyocyte apoptosis via upregulating SIRT1 and miR-22 might be a new target for treating Dox-induced cardiotoxicity.  相似文献   

17.
Doxorubicin (DXR) causes dose dependent cardiotoxicity in experimental animals and in humans. In chronic doxorubicin cardiotoxicity model mice, the role of G. biloba extract (Gbe) which has an antioxidant property, was investigated. Doxorubicin treated animals showed higher mortality (68%), increased ascites, marked bradycardia, prolongation of ST and QT intervals and widening of QRS complex. Myocardial SOD and glutathione peroxidase activity were decreased and lipid peroxidation was increased. Ultrastructure of heart of DXR treated animals showed loss of myofibrils, swelling of mitochondria, vacuolization of mitochondria. G. biloba extract significantly protected the mice from cardiotoxic effects of doxorubicin as evidenced by lowered mortality, ascites, myocardial lipid peroxidation, normalization of antioxidant enzymes, reversal of ECG changes and minimal ultrastructural damage of the heart. The results indicate that administration of G. biloba extract protected mice from doxorubicin-induced cardiotoxicity.  相似文献   

18.
Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2-/-) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.  相似文献   

19.
Doxorubicin (DOX)-induced cardiotoxicity is thought to be mediated by the generation of superoxide anion radicals (superoxide) from redox cycling of DOX in cardiomyocyte mitochondria. Reduction of superoxide generates H(2)O(2), which diffuses throughout the cell and potentially contributes to oxidant-mediated cardiac injury. The mitochondrial and cytosolic glutathione peroxidase 1 (Gpx1) primarily functions to eradicate H(2)O(2). In this study, we hypothesize that Gpx1 plays a pivotal role in the clearance of H(2)O(2) generated by DOX. To test this hypothesis, we compared DOX-induced cardiac dysfunction, mitochondrial injury, protein nitration, and apoptosis in Gpx1-deficient and wild type mouse hearts. The Gpx1-deficient hearts showed increased susceptibility to DOX-induced acute functional derangements than wild type hearts, including impaired contractility and diastolic properties, decreased coronary flow rate, and reduced heart rate. In addition, DOX treatment impaired the mitochondrial function of Gpx1-deficient hearts. Specifically, Gpx1-deficient hearts treated with DOX demonstrated an increased rate of NAD-linked state 4 respiration and a decline in the P/O ratio relative to wild type hearts, suggesting that DOX uncouples the electron transfer chain and oxidative phosphorylation in Gpx1-deficient hearts. Finally, apoptosis and protein nitration were significantly increased in Gpx1-deficient mouse hearts compared to wild type hearts. These studies suggest that Gpx1 plays significant roles in protecting DOX-induced mitochondrial impairment and cardiac dysfunction in the acute phase.  相似文献   

20.
This study aimed at evaluation of melatonin and some of its novel synthesized derivatives 3, 4, 9 and 10b as cardioprotective agents against doxorubicin-induced acute cardiac toxicity in rats. Also, this work was extended to study the potential role of each synthesized derivative in comparison with the parent compound melatonin. Intraperitoneal injection of a single dose (15mg/kg B.W.) of doxorubicin resulted in significant increase in serum troponin I, leptin, triglycerides, cholesterol and LDL-cholesterol levels with concomitant decrease in serum T(3), T(4) and IL-1alpha levels. In contrast, intraperitoneal injection of melatonin or its synthesized derivatives especially compounds 3 and 10b in a dose of 5mg/kg B.W./day for 10days reversed doxorubicin-induced changes in the above mentioned parameters towards the normal values. The present data revealed that doxorubicin exerts its action mainly through the oxidative stress. This appeared from the significant elevation in serum nitric oxide level and cardiac lipid peroxidation level with concomitant decrease in cardiac antioxidative enzymes activity. Treatment with melatonin and its derivatives 3 and 10b could reduce the markers of oxidative stress and restore the activity of the antioxidative enzymes in the heart tissue. In conclusion, the cardioprotective effect of melatonin and its derivatives may be mediated through the antioxidant and free radical scavenging activity of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号