首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHO cells and cs-4-D3 cells were used to investigate the association between poly(ADP-rib) synthesis and the cessation of DNA synthesis and DNA fragmentation. The cs4-D3 cells are cold-sensitive DNA synthesis arrest mutants of CHO cells. Upon incubation at 33 degrees C, DNA synthesis in the cs4-D3 cells stops and the cells enter a prolonged G1 or G0 phase. The events that occurred when cs4 cells were incubated at 33 degrees C were similar to those that occurred when wild-type CHO cells grew to high density. (1) In both cases, DNA synthesis and cell growth stopped. (2) The NAD+ concentration/cell was 20-25% lower in growth-arrested cells than in logarithmically growing cells. (3) Poly(ADP-rib) synthesis was 3-4 fold higher in growth-arrested cells than in logarithmically growing cells. (4) The growth-inhibited cells developed DNA strand breaks which resulted in large percentages of their DNA appearing in the low molecular weight range of alkaline sucrose gradients. (5) Both the increased rate of poly(ADP-rib) synthesis and the development of DNA strand breaks appears to be characteristic of the G1 phase of the cell cycle. (6) When growth-inhibited cells were restored to conditions favorable for DNA synthesis and cell growth, the DNA strand breaks were repaired. (7) Prolonged incubation under growth-restrictive conditions resulted in the accumulation of more DNA strand breaks than the cells could repair. This was followed by cell death when the cells were restored to conditions favorable for cell growth.  相似文献   

2.
Salt-adapted and control cells of the cultivated potato, Solanum tuberosum cultivar Russet Burbank, untreated or treated with 5-azacytidine (an inhibitor of DNA methylation), were compared with respect to: a) % of cytosine methylation in total nuclear DNA, as determined by HPLC; b) fresh and dry weight. Adapted and control cells were compared also with respect to % of cytosine methylation in DNA, which was purified from DNaseI-partially-digested chromatin and size fractionated by electrophoresis in agarose gels. The growth (represented by dry weight) of the NaCl-adapted cells in saline medium lacking 5-azacytidine was similar to that of control cells in standard medium. The adaptation of the cells was correlated with some increase (+16%) of methylation in total DNA and with a much greater increase in the lower molecular weight DNA fractions which were obtained from the presumably more active chromatin. As expected, the treatment of the cells with the methylation inhibitor induced a decrease in the level of methylation. The decrease of methylation, however, was much greater in the adapted cells, whose dry weight, unlike in the control, was not affected by this treatment.Abbreviations 5-azaCyt 5-azacytidine - C cytidine - 2,4-D 2,4 dichlorophenoxyacetic acid - DW dry weight - EDTA ethylenediaminetetraacetic acid - FW fresh weight - HPLC high performance liquid chromatography - m5Cyt 5 methyl cytidine - RB Russet Burbank - SDS sodium dodecyl sulfate - TE 10 mM Tris and 1 mM EDTA - Tris Tris [hydroxymethyl] aminomethane  相似文献   

3.
DNA breaks and repair in mouse leukemia L1210 cells treated with 3 different types of cross-linkers, mitomycin C (MMC), 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) and SN-07 (a macromolecular antibiotic), were studied. Measured in D37 values, MMC gave the highest number of cross-links per lethal 'hit' directly after the 1-h treatment in the alkaline elution assay, followed by ACNU and SN-07. A good dose-response increase in induced interstrand DNA cross-linking frequency was observed in cells treated with 2.5-10 micrograms/ml MMC and with 10-100 micrograms/ml ACNU for 1 h with and without 24-h post-incubation. After 6-h post-incubation, the highest frequency of cross-linking was observed in cells treated with 2.5 micrograms/ml MMC and 30 micrograms/ml ACNU, while cross-link production continued in the cells treated with SN-07 for 12-h post-incubation. No significant increase in DNA breaks was observed in cells treated with MMC throughout 24-h post-incubation. The highest frequency of single-strand DNA breaks in cells treated with ACNU was observed immediately after the treatment and they disappeared after 6-h post-incubation. After 24-h post-incubation, a marked enhancement of the DNA breaks was observed in cells treated with SN-07 and the cells contained double-strand DNA breaks also. RNA synthesis was not affected in the cells treated with 10 micrograms/ml MMC and slightly inhibited to 70% of control in those treated with 100 micrograms/ml ACNU, while DNA synthesis in both cells was significantly inhibited after 24-h post-incubation. By contrast, both RNA and DNA synthesis were completely inhibited in cells treated with 8.0 micrograms/ml SN-07.  相似文献   

4.
Molecular biology techniques have advanced the field of microbial ecology through the analysis of nucleic acids. Most techniques that use DNA or RNA require their extraction from environmental matrices, which can be tedious and inefficient. While a number of extraction methods, both laboratory-based and commercially available, have been developed, none of these include a convenient method to determine extraction efficiency. We have developed an external DNA recovery standard, Lambda DNA (target DNA) contained within pBR322, allowing routine determinations of DNA recovery efficiency. Target DNA was added to sediments as whole cells, total DNA extracted using commercial DNA extraction/purification kits and the amount of target DNA recovered quantified by quantitative-competitive PCR (QC-PCR). Three commercially available kits (UltraClean Soil DNA, FastDNA SPIN and Soil Master DNA Extraction) were evaluated for recovery efficiency. Recoveries for the three kits ranged from undetectable to 43.3% with average recoveries of 14.9+/-16.0%, 28.3+/-10.5% and 2.4+/-0.1% (UltraClean, FastDNA and Soil Master, respectively). Quantification of target DNA proved robust in sediments heavily polluted with polycyclic aromatic hydrocarbons and the external recovery standard could be detected following extraction and amplification from as few as 1 x 10(3) cells added to 0.5 g sediment (wet weight). The external DNA recovery standard was also added directly to the sediment as purified plasmid DNA prior to extraction. It was recovered with similar efficiency as when added as whole cells, suggesting its usefulness in estimating DNA recovery in ribosomal DNA studies. These results show that, while the commercial kits offer expedited sample processing, the extraction efficiencies vary on a sample-by-sample basis and were <100%. Therefore, quantitative DNA studies require an estimation of DNA recovery.  相似文献   

5.
Sequence-specific triple helix formation with genomic DNA   总被引:1,自引:0,他引:1  
Ye Z  Guntaka RV  Mahato RI 《Biochemistry》2007,46(40):11240-11252
  相似文献   

6.
Xie Z  Braithwaite E  Guo D  Zhao B  Geacintov NE  Wang Z 《Biochemistry》2003,42(38):11253-11262
Benzo[a]pyrene is a potent environmental carcinogen, which can be metabolized in cells to the DNA damaging agent anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (anti-BPDE). We hypothesize that mutations induced by BPDE DNA adducts are mainly generated through an error-prone translesion synthesis that requires a specialized DNA polymerase (Pol). Using an in vivo mutagenesis assay in the yeast model system, we have examined the potential roles of Pol(zeta) and Pol(eta) in (+/-)-anti-BPDE-induced mutagenesis. In cells proficient in mutagenesis, (+/-)-anti-BPDE induced 85% base substitutions with predominant G --> C followed by G --> T transversions, 9% deletions of 1-3 nucleotides, and 6% insertions of 1-3 nucleotides. In rad30 mutant cells lacking Pol(eta), (+/-)-anti-BPDE-induced mutagenesis was reduced and accompanied by a moderate decrease in base substitutions and more significant decrease in deletions and insertions of 1-3 nucleotides. In rev3 mutant cells lacking Pol(zeta), (+/-)-anti-BPDE-induced mutagenesis was mostly abolished, leading to a great decrease in both base substitutions and deletions/insertions of 1-3 nucleotides. In contrast, large deletions/insertions were significantly increased in cells lacking Pol(zeta). Consistent with the in vivo results, purified yeast Pol(zeta) performed limited translesion synthesis opposite (+)- and (-)-trans-anti-BPDE-N(2)-dG DNA adducts with predominant G incorporation opposite the lesion. These results show that (+/-)-anti-BPDE-induced mutagenesis in yeast requires Pol(zeta) and partially involves Pol(eta) and suggest that Pol(zeta) directly participates in nucleotide insertions opposite the lesion, while Pol(eta) significantly contributes to deletions and insertions of 1-3 nucleotides.  相似文献   

7.
Amphiphilic graft polymers, containing oligolysine groups pendent to a hydrophobic polycyclooctene backbone, were used to form polyplexes with plasmid DNA pZsGreen1-N1. These poly(cyclooctene- graft-pentalysine) structures were found to be effective transfection reagents for COS-1 and HeLa cells. In the case of polymer 1e (average degree of polymerization of 206), protein expression levels 48 h post-transfection were found to be comparable to, or better than, commercial transfection reagents jetPEI and SuperFect. With HeLa cells, GFP expression levels were better than Lipofectamine 2000. Of particular interest was the excellent cell viability seen in experiments with polyplexes formed from the pentalysine-grafted polymers. In the example of the highest molecular weight graft copolymer, polymer 1e, cell viability relative to untreated cells was 99% with COS-1 cells and 92% with HeLa cells in contrast to the commercial reagents, which gave 67-80% with COS-1 cells and 17-52% with HeLa cells. The effectiveness of these polyolefin- graft-pentalysine structures as DNA delivery vehicles is attributed to their amphiphilic nature and branched architecture.  相似文献   

8.
Alterations in expression and structure of the DNA repair gene XRCC1.   总被引:3,自引:0,他引:3  
The repair-associated gene XRCC1 was previously cloned by complementing the hamster mutant EM9, which has a high rate of spontaneous SCE and hypersensitivity to DNA damaging agents. In analyzing XRCC1 gene expression, similar levels of steady-state mRNA were found in normal cells, Bloom's syndrome cells with altered SCE, and in squamous carcinoma cells with differential X-ray sensitivity. An EcoRI restriction fragment-length polymorphism previously identified in XRCC1 did not correlate with the repair phenotypes of these cells. The mRNA of XRCC1 decreased to 20-40% after treatment of cells with a DNA damaging agent. XRCC1 also showed tissue specific expression in rats. The mRNA levels were high in testis (7-8 fold), ovary (3-4 fold) and brain (4-5 fold), when compared with those in intestine, liver and spleen (1-2 fold). These data and the high levels of XRCC1 protein detected in testis indicate that XRCC1 may play an important role in DNA processing during meiogenesis and recombination in germ cells.  相似文献   

9.
DNA damage produced by cadmium in a human fetal hepatic cell line   总被引:3,自引:0,他引:3  
Cadmium (Cd) is one of the most important heavy metal environmental toxicants. It alters a wide variety of cellular and biochemical processes. The objective of this work was to study DNA damage and recovery after acute and chronic CdCl2 treatment in a human fetal hepatic cell line (WRL-68 cells). Using the alkaline microgel electrophoresis assay that detects DNA single-strand breaks and/or alkali-labile sites in individual cells, we evaluated for levels of DNA damage. The mean migration length in control cells was 35.37+/-1. 43 microm (8% damaged cells), whereas the mean migration in cells treated with 0.005 microM CdCl2 for 3 h (acute low dose) was 65. 87+/-2.07 microm (88% damaged cells). Treatment with 0.01 microM CdCl2 for the same time (acute high dose) increased the mean migration length to 125.79+/-2.91 microm (92% damaged cells). However, a 0.005 microM CdCl2 treatment for 7 days (chronic treatment) only increased 65% DNA migration to 58.38+/-2.59 microm (88% damaged nucleus). Lipoperoxidative damage expressed as malondialdehyde (MDA) production per milligram of protein was 15. 7+/-2.6 for control cells, whereas in Cd-treated cells the values were 20.2+/-2.4 (acute low dose), 22.9+/-2.2 (acute high dose), and 22.6+/-2.1 (chronic treatment). To study the repair of DNA damage, cells were washed with 0.01 microM meso-2,3-dimercaptosuccinic acid (DMSA), and fresh Dulbecco's modified essential medium (DMEM) added. The percentage of damaged cells diminished after 90 min, with DNA migration returning to control values by 120 min. Cd treatment produced DNA single-strand breaks and the damage was greater in acute high dose treated cells. Lipid peroxidation values did not correlate with DNA single-strand breaks.  相似文献   

10.
BACKGROUND: Internucleosomal DNA fragmentation is one of the hallmarks of apoptosis. Because the low molecular weight DNA fragments are extracted during cell staining in aqueous solutions, apoptotic cells can be identified on DNA content frequency histograms as cells with fractional ("sub-G(1)") DNA content. The aim of the present study was to explore whether in situ DNA fragmentation during apoptosis is discontinuous or progresses incessantly and if it is discontinuous, to define the resistant to cleavage fraction of DNA that remains stainable with the fluorochrome. MATERIALS AND METHODS: The model of activation-induced apoptosis of human lymphocytes was chosen as it provides uniform cell population with identical DNA content (DI = 1.00) that undergo apoptosis. Their apoptosis was induced by multivalent mitogen phytohemagglutinin (PHA) in the absence and presence of geldanamycin (GA), the benzoquinone ansamycin antibiotic which binds to Hsp90 (Heat Shock Protein 90) and alters its function. The cells were stained with acridine orange, the metachromatic fluorochrome that differentially stains cellular DNA and RNA. RESULTS: A sharp, discrete peak representing the subpopulation of "sub-G(1)" cells with highly reproducible DI = 0.42 +/- 0.02 (CV = 5.5 +/- 1.2) was observed on DNA content histograms of lymphocytes whose apoptosis was induced by PHA alone. Two distinct peaks, one representing cell subpopulations with DI = 0.42 (as above) and another, with DI = 0.79 +/- 0.04 (CV = 5.8 +/- 0.4), respectively, were seen in apoptotic cells from cultures stimulated with PHA in the presence of GA. The frequency of cells represented by the sub-G(1) peaks varied depending on time of induction of apoptosis and GA concentration. CONCLUSIONS: Apoptosis-induced DNA fragmentation is discontinuous; approximately 42% of DNA is relatively stable and remains within the cell. The data suggest that the stable DNA is associated with nuclear matrix while the degradable fraction represents DNA in loop domains. A transient DNA stabilization is apparent in the presence of GA as evidenced by the presence of cell subpopulations with 79% of DNA retained in the cell. The observed discontinuity of DNA fragmentation appears to reflect sequential involvement of different nucleases and may also be modulated by chromatin structure.  相似文献   

11.
12.
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9 -/- MES and Mdc1 -/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9 -/- MES. As the exposure to SMG was prolonged, Rad9 -/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9 -/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1 -/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1 -/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.  相似文献   

13.
In vivo DNA damage in gastric epithelial cells   总被引:6,自引:0,他引:6  
A number of risk factors have been linked epidemiologically with gastric cancer, but studies of DNA damage in gastric epithelial cells are limited. The comet assay is a simple technique for determining levels of DNA damage in individual cells. In this study, we have validated the comet assay for use in epithelial cells derived directly from human gastric biopsies, determined optimal conditions for biopsy digestion and investigated the effects of oxidative stress and digestion time on DNA damage. Biopsies taken at endoscopy were digested using combinations of pronase and collagenase, ethylenediaminetetra-acetic acid (EDTA) and vigorous shaking. The resultant cell suspension was assessed for cell concentration and epithelial cell and leukocyte content. A score for DNA damage, the comet %, was derived from the cell suspension, and the effect of various digestion conditions was studied. Cells were incubated with H(2)O(2) and DNA damage was assessed. Pronase and collagenase provided optimum digestion conditions, releasing 1. 12x10(5) cells per biopsy, predominantly epithelial. Of the 23 suspensions examined, all but three had leukocyte concentrations of less than 20%. The comet assay had high inter-observer (6.1%) and inter-assay (4.5%) reproducibility. Overnight storage of the biopsy at 4 degrees C had no significant effect on DNA migration. Comet % increased from a median of 46% in untreated cells to 88% in cells incubated for 45 min in H(2)O(2) (p=0.005). Serial 25-min digestions were performed on biopsies from 13 patients to release cells from successively deeper levels in the crypt. Levels of DNA migration were significantly lower with each digestion (r=-0.94, p<0.001), suggesting that DNA damage is lower in younger cells released from low in the gastric crypt. The comet assay is a reproducible measure of DNA damage in gastric epithelial cells. Damage accumulates in older, more superficial cells, and can be induced by oxidative stress.  相似文献   

14.
Chinese hamster ovary (CHO) K1 and radiosensitive CHO irs-20 cells were synchronized in S phase and labeled for 10 min with 5-[(125)I]-iodo-2'-deoxyuridine ((125)IdU). The cells were washed, incubated in fresh medium for 1 h for incorporation of the intracellular radionucleotides into DNA, and then frozen (-80 degrees C) for accumulation of (125)I decays. At intervals after freezing, when the cells had accumulated the desired number of decays, aliquots of the frozen cells were thawed and plated to determine survival. The survival curves for K1 and irs-20 cells were similar from 100% to 30% survival. At higher (125)I doses (more decays/cell), the survival of K1 cells continued to decline exponentially, but the survival of X-ray-sensitive irs-20 cells remained at approximately 30% even after the cells had accumulated 1265 decays/cell. The results contradict the notion that increased DNA damage inevitably causes increased cell death. To account for these findings, we propose a model that postulates the existence of a second radiation target. According to this model, radiation damage to DNA may be necessary to induce cell death, but DNA damage alone is not sufficient to kill cells. We infer from the survival response of irs-20 cells that damage to a second (non-DNA) structure is involved in cell death, and that this structure directly affects the repair of DNA and cell survival.  相似文献   

15.
Specific immune serum to the Epstein-Barr virus DNA polymerase.   总被引:2,自引:1,他引:1       下载免费PDF全文
R G Petit  K Leung    J E Shaw 《Journal of virology》1987,61(10):3331-3334
Epstein-Barr virus (EBV) DNA polymerase was released from phorbol ester-treated tamarin (Saguinus oedipus) cells (B95-8) and prepared for use as an antigen by sequential column chromatography with DEAE-Sephadex A-25, DEAE-cellulose, phosphocellulose, and single-stranded DNA cellulose. Proteins from single-stranded DNA cellulose with DNA polymerase activity in 100 mM ammonium sulfate were mixed with complete Freund adjuvant and injected intradermally into rats and rabbits. Immune sera that were screened for specific antibody by indirect immunofluorescence procedures reacted with approximately 3% of the cells in EBV-producer cultures (B95-8 and P3HR-1) but not with EBV genome-negative cells (BJAB). In functional enzyme assays, immune sera or the immunoglobulin fraction inhibited the activity of purified EBV DNA polymerase 90%. Inhibition of enzyme activity was not affected by absorption of immune sera with insoluble matrices of proteins prepared with tamarin and human cells which lacked the EBV genome. Cellular DNA polymerase alpha was not inhibited by immune sera to the EBV enzyme.  相似文献   

16.
We have examined DNA adduct formation in myeloperoxidase containing HL-60 cells treated with the toluene metabolite p-cresol. Treatment of HL-60 cells with the combination of p-cresol and H(2)O(2) produced four DNA adducts 1: (75.0%), 2: (9.1%), 3: (7.0%) and 4: (8.8%) and adduct levels ranging from 0.3 to 33.6 x 10(-7). The levels of DNA adducts formed by p-cresol were dependent on concentrations of p-cresol, H(2)O(2) and treatment time. In vitro incubation of p-cresol with myeloperoxidase and H(2)O(2) produced three DNA adducts 1: (40.5%), 2: (28.4%) and 3: (29.7%) with a relative adduct level of 0.7x10(-7). The quinone methide derivative of p-cresol (PCQM) was prepared by Ag(I)O oxidation. Reaction of calf thymus DNA with PCQM produced four adducts 1: (18.5%), 2: (36.4%), 3: (29.0%) and 5: (16.0%) with a relative adduct level 1.6x10(-7). Rechromatography analyses indicates that DNA adducts 1-3 formed in HL-60 cells treated with p-cresol and after myeloperoxidase activation of p-cresol were similar to those formed by reaction of DNA with PCQM. This observation suggests that p-cresol is activated to a quinone methide intermediate in each of these activation systems. Taken together, these results suggest PCQM is the reactive intermediate leading to the formation of DNA adducts in HL-60 cells treated with p-cresol. Furthermore, the DNA adducts formed by PCQM may provide a biomarker to assess occupational exposure to toluene.  相似文献   

17.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The nitrosoureas including BCNU are potent chemotherapeutic drugs and have been used extensively for treatment of brain tumors and other neoplasias but the mechanisms of action for the DNA lesions created and their repair are still unclear. We have recently determined the in vitro repair of BCNU-treated DNA with cellular extracts and with DNA modifying enzymes. BCNU not only caused an increase in breaks in plasmid DNA, but an increase in cross-linked DNA was also observed after restriction enzyme digestion followed by gel electrophoresis. When HeLa cell-extracts were incubated with BCNU-treated DNA, 5-10 fold increases in DNA repair synthesis were observed as compared with untreated control. Substantial increases in 5'OH and 3'OH sites of the breaks were also found in BCNU-treated DNA as determined by the 10-20 fold increases in labeling with T4-DNA kinase and by endogenous polymerases, while the amount of ligatable sites were at a minimal. When the repair capacity of two glioma cell lines (UWR1 and UWR3) with differential BCNU sensitivity, and cells from a chromosomal breakage disease, Bloom's syndrome (BS), were assessed, the activities of the two glioma cells were about 20-30% of the normal lymphoblastoid cells and HeLa cells, whereas no difference was observed in BS cells. However, differential patterns of DNA bands were observed in the glioma samples suggesting cell-type specific capacities of repair synthesis. These data are in accordance with the concept that BCNU creates multiple DNA lesions and suggests different cell types may develop a variety of repair capabilities.  相似文献   

19.
An assay system for factors involved in mammalian DNA replication   总被引:3,自引:0,他引:3  
An assay for cellular factors stimulating DNA synthesis by partially lysed CHO cells is presented. The assay is based on the observation that in highly lysed cells, DNA synthesis, as determined by [3H]dTTP incorporation, was only 2-5% of that in gently lysed cells, and that this low level of DNA synthesis could be increased by a factor of approx. 50 by the addition of CHO cell extract (i.e. supernatant of a cell homogenate subjected to high-speed centrifugation). Highly lysed cells were obtained by treatment with 0.1% Brij-58 and 240 mM KCl, while for the preparation of gently lysed cells, 0.01% Brij-58 and 80 mM KCl were used. Incorporation of [3H]dTTP reflected DNA synthesis qualitatively similar to that in intact cells. It was semiconservative, and no repair synthesis was detected unless cells were irradiated with ultraviolet light prior to parital lysis. DNA molecules of 4 S were synthesized and converted to DNA of more than 25 S via 6-12-S intermediates. DNA synthesis was restricted to nuclei from cells in S phase, and cell extract did not induce DNA synthesis in nuclei from cells in G1 phase. Stimulation of DNA synthesis by cell extract was concentration-dependent. Cell extract activity was recovered to more than 50% after (NH4)2SO4 precipitation. Heat-inactivation experiments suggested that cell extract contained at least tow factors timulating DNA replication. This system may, therefore, be used for the purification and characterization of factors participating in DNA replication of mammalian cells.  相似文献   

20.
To study the possible involvement of DNA cruciforms in the initiation of DNA replication, we used two monoclonal antibodies, 2D3 and 4B4, with anti-cruciform DNA specificity. Synchronized CV-1 cells were released into S phase for hourly intervals up to 6 h and permeabilized in the presence of monoclonal antibodies, under conditions that allow limited DNA replication. Exposure of the permeabilized cells to 2D3 or 4B4 resulted in a 2- to 6-fold enhancement of incorporation of labeled precursor nucleotide over the 6 h period. Approximately 50% of the enhanced synthesis was sensitive to aphidicolin, and the enhancing effect of 2D3 was abolished by absorption with immunobead anti-mouse immunoglobulin. Dot-blot hybridization analyses of DNA isolated from anti-cruciform antibody treatment groups showed a similar 2- to 11-fold increase in the relative copy number of low copy probes. In contrast, exposure of the permeabilized cells to a monoclonal antibody directed against Z-DNA and B-DNA had no significant effect on DNA synthesis. The results suggest that cruciforms are present in replicating DNA and that they are recognized and stabilized by the monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号