首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central parts of the chick notochord at Hamburger and Hamilton's stages 20–22 were investigated by electron microscopy. Electron-dense bodies of various sizes and shapes and bounded by a limiting membrane were found in the central cells of the notochord. These dense bodies contained fibrous material or microfibrils which ranged from 120 to 600 Å in diameter. The large microfibrils often exhibited a typical repeating period with an interval of about 320 Å. These dense bodies were always located near the cell membrane, which is rough or irregular in the central parts of the notochord at these stages. The fibrous core material of the dense body frequently shows striking similarities to amorphous fibrous material in the intercellular space of the central parts of the notochord, where they are situated at a considerable distance from the perinotochordal sheath space. From these results, it seems reasonable to suggest that the central cells as well as the peripheral cells of the notochord are capable of forming microfibrils similar to those observed in the perinotochordal sheath space.Moreover, they may play an important role in the total fibrillogenesis of the notochord.  相似文献   

2.
Bcl-2 and Bax proteins are expressed in cells of the tails of Pelophylax ridibundus larvae. We investigated the levels of these proteins in tails undergoing apoptosis. Apoptotic cells were observed in the epidermis, muscle and notochord of tails of different lengths. The apoptotic cells in epidermis exhibited the typical features of apoptosis. Amorphous masses and irregularities in striated muscle tissue undergoing apoptosis and apoptotic remnants in the notochord also were observed. In general, Bax staining in the epidermis, subepidermal fibroblast layer, muscle and notochord cells increased, while Bcl-2 staining decreased as the tail regressed. Our results suggest that during tail regression due to metamorphosis, Bcl-2 and Bax proteins play key roles in the apoptosis of tail epidermis, subepidermal fibroblast layer, muscle and notochord cells.  相似文献   

3.
The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, we demonstrate that Wnt signaling in the NPCs is essential for posterior extension of the notochord. Genetic labeling revealed that the Noto-expressing cells in the ventral node contribute the NPCs that reside in the tail bud. Robust Wnt signaling in the NPCs was observed during posterior notochord extension. Genetic attenuation of the Wnt signal via notochord-specific β-catenin gene ablation resulted in posterior truncation of the notochord. In the NPCs of such mutant embryos, the expression of notochord-specific genes was down-regulated, and an endodermal marker, E-cadherin, was observed. No significant alteration of cell proliferation or apoptosis of the NPCs was detected. Taken together, our data indicate that the NPCs are derived from Noto-positive node cells, and are not fully committed to a notochordal fate. Sustained Wnt signaling is required to maintain the NPCs’ notochordal fate.  相似文献   

4.
Induction of an additional floor plate in the neural tube   总被引:3,自引:0,他引:3  
The role of the notochord in the morphogenesis of the neural tube was investigated by implanting a notochord fragment laterally to the neural wall of a 1.5 day chick embryo. Embryos were sacrificed at 4 days. In the basal part of the neural tube an additional floor plate was induced in the vicinity of the implant. This floor plate was characterized by a low proliferative activity, a thin wall, spindle-like nuclei crowded peripherally and some neuroblast-like cells. It was either blending with the natural floor plate or separated from it, depending on the exact position of the implant. In the latter case neuroblasts were observed in between both floor plates. The additional floor plate was present only when the implanted notochord was less than 25 micron apart from the neural tube; at larger distance an increase of the ventral horn neuroblast area could be seen. It is concluded that the implanted notochord is able to induce a floor plate at 1.5 days of incubation. The specific influence of the notochord on the morphogenesis of the neural tube, its inductive period as well as the presence of the neuroblast-like cells in the additional floor plate are discussed.  相似文献   

5.
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.  相似文献   

6.
Grafting experiments previously have established that the notochord affects dorsoventral polarity of the neural tube by inducing the formation of ventral structures such as motor neurons and the floor plate. Here, we examine if the notochord inhibits formation of dorsal structures by grafting a notochord within or adjacent to the dorsal neural tube prior to or shortly after tube closure. In all cases, neural crest cells emigrated from the neural tube adjacent to the ectopic notochord. When analyzed at stages after ganglion formation, the dorsal root ganglia appeared reduced in size and shifted in position in embryos receiving grafts. Another dorsal cell type, commissural neurons, identified by CRABP and neurofilament immunoreactivity, differentiated in the vicinity of the ectopic notochord. Numerous neuronal cell bodies and axonal processes were observed within the induced, but not endogenous, floor plate 1 to 2 days after implantation but appeared to be cleared with time. These results suggest that dorsally implanted notochords cannot prevent the formation of neural crest cells or commissural neurons, but can alter the size and position of neural crest-derived dorsal root ganglia.  相似文献   

7.
Notochord cells in ascidian embryos are formed by the inducing action of cells of presumptive endoderm, as well as neighboring presumptive notochord, at the 32-cell stage. Studies of the timing of induction using recombinations of isolated blastomeres have suggested that notochord induction must be initiated before the decompaction of blastomeres at the 32-cell stage and is completed by the 64-cell stage. However, it is not yet clear how the duration of notochord induction is strictly limited. In the present paper, the aim was to determine in detail when the presumptive notochord blastomeres lost their competence to respond, and when the presumptive endoderm blastomeres produced inducing signals for the notochord. Presumptive notochord blastomeres and presumptive endoderm blastomeres were isolated from early 32-cell embryos, and were heterochronously recombined at various stages ranging from the early 32-cell stage to the 64-cell stage. Presumptive notochord blastomeres could respond to inductive signals at the early 32-cell stage, and started to lose their responsiveness at the decompaction stage. By contrast, the presumptive endoderm blastomeres persisted in their inducing capacity even at the 64-cell stage. These observations suggest that the loss of competence in presumptive notochord blastomeres limits the duration of notochord induction in intact ascidian embryos.  相似文献   

8.
Three-dimensional relationships between tissues during the formation of germ layers were studied in sections of normally developing embryos of the newt, Cynops pyrrhogaster. In gastrulae, the inner postinvolution layer was not in direct contact with the outer preinvolution layer as a result of the presence of an intervening layer of cells. Only after the formation of the yolk plug, a narrow strip of primitive notochord, which consisted of columnar cells, established a close contact with the central part of the overlaying presumptive neural plate. The primitive notochord was also linked to endoderm at its right and left margins, facing the archenteron. Mesodermal cells other than notochord cells were mesenchymal until the neurula stage, when primitive somites appeared on both sides of the notochord. From a comparison of the relative locations of tissues in embryos at different stages of development, it was shown that the notochord elongates by a remodeling of the mass of the primitive notochord, and that, as the anteriorly directed translocation of the neural area and the invagination of endoderm occur, these processes keep pace with the elongation of the notochord. These observations suggest organizing or guiding roles for the notochord in the formation of germ layers. A role for the dorsal lip of the blastopore as the organizer is discussed in relation to the origin of the notochord.  相似文献   

9.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to address this issue directly. Therefore the present study examined the developmental role of HNF-3 in ascidian notochord differentiation. When embryos were injected with a low dose of HNF-3 mRNA, their tails were shortened and when embryos were injected with a high dose of HNF-3 mRNA, which was enough to inhibit differentiation of epidermis and muscle, no obvious ectopic differentiation of endoderm or notochord cells was observed. However, co-injection of HNF-3 mRNA along with Brachyury mRNA resulted in ectopic differentiation of notochord cells in the animal hemisphere, suggesting that HNF-3 acts synergistically with Brachyury in ascidian notochord differentiation. Notochord differentiation of the A-line precursor cells depends on inducing signal(s) from endodermal cells, which can be mimicked by bFGF treatment. Treatment of notochord precursor cells isolated from the 32-cell stage embryoswith bFGF resulted in upregulation of both the HNF-3 and Brachyury genes.  相似文献   

10.
11.
Xenopus mesoderm cells destined to form notochord have been isolated at various stages of gastrulation and cultured singly or in multicellular reaggregates in ectodermal sandwiches. When taken from mid gastrulae, singly implanted notochord progenitor cells can subsequently express the notochord marker MZ15. In contrast, the same cells taken from an early gastrula only do so when implanted as groups of such cells. We conclude that the community effect, first described for muscle differentiation, also applies to the notochord, and that the time in development when the notochord community effect is required precedes that for muscle. Correspondence to: J.B. Gurdon  相似文献   

12.
13.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

14.
The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.  相似文献   

15.
16.
The ascidian notochord follows a morphogenetic program that includes convergent extension (C/E), followed by anterior-posterior (A/P) elongation [1-4]. As described here, developing notochord cells show polarity first in the mediolateral (M/L) axis during C/E, and subsequently in the A/P axis during elongation. Previous embryological studies [3] have shown that contact with neighboring tissues is essential for directing M/L polarity of ascidian notochord cells. During C/E, the planar cell polarity (PCP) gene products prickle (pk) and dishevelled (dsh) show M/L polarization. pk and dsh colocalize at the notochord cell membranes, with the exception of those in contact with neighboring muscle cells. In the mutant aimless (aim), which carries a deletion in pk, notochord morphogenesis is disrupted, and cell polarization is lost. After C/E, there is a dynamic relocalization of PCP proteins in the notochord cells with dsh localized to the lateral edges of the membrane, and pk and strabismus (stbm) at the anterior edges. An A/P polarity is present in the extending notochord cells and is evident by the position of the nuclei, which in normal embryos are invariably found at the posterior edge of each cell. In the aim mutant, all appearances of A/P polarity in the notochord are lost.  相似文献   

17.
Morphometric data from scanning electron micrographs (SEM) of cells in intact embryos and high-resolution time-lapse recordings of cell behavior in cultured explants were used to analyze the cellular events underlying the morphogenesis of the notochord during gastrulation and neurulation of Xenopus laevis. The notochord becomes longer, narrower, and thicker as it changes its shape and arrangement and as more cells are added at the posterior end. The events of notochord development fall into three phases. In the first phase, occurring in the late gastrula, the cells of the notochord become distinct from those of the somitic mesoderm on either side. Boundaries form between the two tissues, as motile activity at the boundary is replaced by stabilizing lamelliform protrusions in the plane of the boundary. In the second phase, spanning the late gastrula and early neurula, cell intercalation causes the notochord to narrow, thicken, and lengthen. Its cells elongate and align mediolaterally as they rearrange. Both protrusive activity and its effectiveness are biased: the anterioposterior (AP) margins of the cells advance and retract but produce much less translocation than the more active left and right ends. The cell surfaces composing the lateral boundaries of the notochord remain inactive. In the last phase, lasting from the mid- to late neurula stage, the increasingly flattened cells spread at all their interior margins, transforming the notochord into a cylindrical structure resembling a stack of pizza slices. The notochord is also lengthened by the addition of cells to its posterior end from the circumblastoporal ring of mesoderm. Our results show that directional cell movements underlie cell intercalation and raise specific questions about the cell polarity, contact behavior, and mechanics underlying these movements. They also demonstrate that the notochord is built by several distinct but carefully coordinated processes, each working within a well-defined geometric and mechanical environment.  相似文献   

18.
The cells that are normally fated to form notochord occupy a region at the rostral tip of the primitive streak at late gastrula/early neurula stages of avian and mammalian development. If these cells are surgically removed from avian embryos in culture, a notochord will nonetheless form in the majority of cases. The origin of this reconstituted notochord previously had not been investigated and was the objective of this study. Chick embryos at late gastrulal early neurula stages were cultured, and the rostral tip of the primitive streak including Hensen's node was removed and replaced with non-node cells from quail epiblast to ensure that the cells normally fated to be notochord would be absent and that healing of the blastoderm would occur. Embryos were allowed to develop for 24 hr, and the presence and origin (host or graft) of the notochord were assessed using antibodies against notochord or quail cells. Two notochords typically developed; both were almost exclusively of host origin. The primitive streak, and in some cases adjacent tissues, was removed from another group of embryos in an attempt to estimate the mediolateral position and extent of the cells required to form reconstituted notochord. Additional experimental embryos with and without grafts were transected at various rostrocaudal levels in an attempt to estimate the rostrocaudal extent of the cells required to form reconstituted notochord. Finally, various levels of the primitive streak either were placed in a neutral environment (the germ cell crescent) or were grafted in place of the node. Collective results from all experiments indicate that the areas lateral to the rostral portion of the primitive streak, estimated to have a rostrocaudal span of less than 500 μm and a mediolateral extent of less than 250 μm, are critical for formation of the reconstituted notochord. Fate mapping and histological examination of this region identify 4 possible precursor cell populations. Further studies are underway to determine which of the 4 possible precursor cell types forms or induces the reconstituted notochord, and which tissue interactions underlie this change in cell fate. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The appendicularian urochordate Oikopleura dioica retains a free-swimming chordate body plan throughout life, in contrast to ascidian urochordates, whose metamorphosis to a sessile adult form involves the loss of chordate structures such as the notochord and dorsal nerve cord. Development to adult stages in Oikopleura involves a lengthening of the tail and notochord and an elaboration of the repertoire of tail movements. To investigate the cellular basis for this lengthening, we have used confocal microscopy and BrdU labeling to examine the development of the Oikopleura notochord from hatching through adult stages. We show that as the notochord undergoes the typical urochordate transition from a stacked row of cells to a tubular structure, cell number begins to increase. Addition of new notochord cells continues into adulthood, multiplying the larval complement of 20 cells by about 8-fold by the third day of life. In parallel, the notochord lengthens by about 4-fold. BrdU incorporation and a cell-cycle marker confirm that notochord cells continue to proliferate well into adulthood. The extensive postlarval proliferation of notochord cells, together with their arrangement in four circumferentially distributed longitudinal rows, presumably provides the Oikopleura tail with the necessary mechanical support for the complex movements exhibited at adult stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号