首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We found a novel 81-kDa acidic protein (ACAMP-81) in the bovine brain membrane fraction, which bound to calmodulin in a Ca(2+)-dependent manner. The present study reveals physicochemical properties and phosphorylation of this protein with various protein kinases in vitro. The Stokes radius and sedimentation coefficient were calculated to be 52 A and 2.05 S, respectively, suggesting that the structure of ACAMP-81 is highly elongated. Purified Ca2+/phospholipid-dependent protein kinase (protein kinase C), cAMP-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) catalyzed the incorporation of 1.46, 0.72, and 0.44 mol of phosphate/mol of ACAMP-81, respectively. The amino acid residues of ACAMP-81 phosphorylated by either protein kinase C or cAMP-dependent protein kinase were almost exclusively on serine. Sequential phosphorylation of ACAMP-81 by cAMP-dependent protein kinase and protein kinase C resulted in the additional incorporation of 1.15 mol of [32P]phosphate into ACAMP-81. Comparison of phosphopeptide maps of ACAMP-81 phosphorylated by each kinase revealed that there are two classes of phosphorylatable polypeptide, one is phosphorylatable by both protein kinases which contained two polypeptides and the others are specific sites for protein kinase C.  相似文献   

2.
3.
We investigated the possible translational regulatory roles played by the interferon-induced, double-stranded-RNA-activated protein kinase (P68) and its natural substrate, eucaryotic initiation factor 2 (eIF-2), in poliovirus-infected cells. We demonstrated that protein kinase P68 was both highly autophosphorylated and activated during poliovirus infection. In accordance with these results, immunoprecipitation analysis revealed that phosphorylation of the endogenous eIF-2 alpha subunit also increased in poliovirus-infected cells. We found that double-stranded RNA synthesized during infection likely induced the high levels of P68 autophosphorylation. To determine whether the increase in kinase activity also could be attributed to induction of P68 synthesis, physical levels of protein kinase were measured. It was unexpectedly found that P68 protein levels did not increase but rather dramatically declined in poliovirus-infected cells. Pulse-chase experiments confirmed that the protein kinase was significantly degraded during virus infection. We corroborated our in vivo observations by developing an in vitro assay for P68 degradation using cell extracts. The possible consequences of P68 degradation and increased eIF-2 alpha phosphorylation for protein synthesis regulation in poliovirus-infected cells are discussed.  相似文献   

4.
Two intermediary kinases in a protein serine/threonine kinase cascade that is triggered in the response of Swiss 3T3 cells to epidermal growth factor (EGF) have been identified. Several separable EGF-stimulated serine/threonine kinase activities were characterized in the preceding paper (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E.G. (1990) J. Biol. Chem. 265, 11487-11494). These were preincubated in various combinations in the presence of MgATP with chromatographic fractions from unstimulated cell extracts. Activation of the rate of phosphorylation of a synthetic peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, was observed on preincubation of the breakthrough fraction from unstimulated cell extracts with either of two distinct EGF-stimulated kinase activities, each of which phosphorylated myelin basic protein. Kinetic analysis and fractionation by sizing gel chromatography demonstrated that two myelin basic protein kinase activities (of approximately 30 and approximately 50 kDa) represented the activating components in the mixtures whereas the unstimulated cell extract breakthrough gave rise in each case to the activated Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala peptide kinase activity of approximately 110 kDa. Inasmuch as the in vitro activation reactions required magnesium plus ATP and were reversed by protein phosphatase treatment, an activation mechanism involving phosphoryl transfer is suggested.  相似文献   

5.
The rat pituitary cell line GH3 contains a high molecular weight microtubule-associated protein with properties characteristic of microtubule-associated protein-2 (MAP-2). The 280-kDa protein is selectively immunoprecipitated by antibodies to authentic bovine brain MAP-2 and is phosphorylated at appropriate sites by cAMP-dependent protein kinase (cAMP kinase) and multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Although MAP-2 is a minor cellular constituent, it can be immunoprecipitated from [32P]Pi-labeled GH3 cells and shown to contain a high level of basal phosphorylation. Vasoactive intestinal peptide, forskolin, 3-isobutyl-1-methylxanthene, or cholera toxin, treatments which increase cellular cAMP levels, or dibutyryl cAMP stimulate phosphorylation of specific sites on MAP-2 without significantly increasing its high state of basal phosphorylation. Phosphopeptide mapping reveals that the sites phosphorylated by cAMP kinase in vitro are the same sites whose phosphorylation in situ increases following stimulation of GH3 with agents that activate cAMP kinase. Increasing intracellular Ca2+ levels in GH3 cells also stimulates phosphorylation of MAP-2 but at sites distinct from those phosphorylated following treatment with cAMP inducing agonists. Phosphopeptide mapping indicates that the sites phosphorylated by CaM kinase in vitro are the same sites whose phosphorylation in situ increases following Ca2(+)-mediated stimulation. We conclude that activation of cAMP- and Ca2(+)-based signaling pathways leads to phosphorylation of MAP-2 in GH3 cells and that cAMP kinase and CaM kinase mediate phosphorylation by these pathways, respectively.  相似文献   

6.
7.
Angiotensin II (ang II) induces c-fos gene expression in part via a protein kinase C-dependent mechanism in cultured vascular smooth muscle cells (VSMC). However, little is known about the mechanisms by which protein kinase C regulates nuclear functions. We examined the ability of ang II to phosphorylate nuclear lamina proteins in VSMC and the possibility that protein kinase C is involved in these putative phosphorylation events. Ang II stimulated the phosphorylation of Triton X-100- and high salt-insoluble nuclear envelope proteins with molecular weights of 70,000, 67,000, and 60,000. These proteins were identified as lamins A, B, and C, respectively, based on their mobilities on two-dimensional gel electrophoresis and interaction with antibodies to lamins as detected by immunoblot analyses. After a 2-min delay, phosphorylation levels of lamins increased, peaked at 20-30 min, and were sustained for at least 60 min after ang II stimulation. The threshold, half-maximal, and maximal concentrations of ang II which induced phosphorylation of lamins were 0.1, 0.5-1, and 100 nM, respectively. Phorbol 12-myristate 13-acetate also induced these reactions, whereas ionomycin did not. Down-regulation of protein kinase C by prolonged treatment with phorbol 12,13-dibutyrate attenuated ang II-induced phosphorylation of lamins. In vitro phosphorylation of nuclear envelope proteins by protein kinase C revealed that lamins served as substrates for this enzyme. These results indicate that ang II induces phosphorylation of lamins in cultured VSMC and suggest that protein kinase C is either directly or indirectly involved in these reactions. The results raise the possibility that phosphorylation of nuclear proteins is one of the important steps by which the protein kinase C signaling pathway regulates agonist-induced nuclear events.  相似文献   

8.
We have identified human, mouse, and chicken homologs to Xenopus S6 protein kinase II (S6KII). In quiescent cells, the apparent molecular mass of the Xenopus homologs (referred to as pp90rsk) increased from a range of 81 to 91 to a range of 85 to 92 kilodaltons following serum addition, which is consistent with an increase in protein phosphorylation. Indeed, serum growth factors stimulated pp90rsk phosphorylation at multiple serine and threonine residues. Furthermore, pp90rsk activity was stimulated within seconds of serum addition. Distinct molecular sizes, chromatographic properties, phosphopeptide maps, and kinetics of activation, the lack of immunological cross-reactivity, and analysis of S6 kinase activities in cells that overexpressed pp90rsk suggest that pp90rsk and pp70-S6 protein kinase, a previously identified mitogen- and oncogene-regulated S6 kinase in cultured cells, are distinct and differentially regulated. The notion that both enzymes are regulated by protein phosphorylation was supported by the ability to inactivate their S6 phosphotransferase activities with potato acid phosphatase. These data demonstrate that homologs to the Xenopus S6 protein kinases are produced and regulated by protein phosphorylation in somatic cells and that, in addition to a proposed role in Xenopus oocyte maturation, these homologs may participate in the initiation of animal cell proliferation.  相似文献   

9.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

10.
When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.g. MAPK (mitogen-activated protein kinase), are known to be translocated into the nucleus. In the present study, we investigated the ability of cryptogein, a proteinaceous elicitor of tobacco defence reactions, to induce different nuclear protein kinase activities. We found that at least four nuclear protein kinases are activated in response to cryptogein treatment in a time-dependent manner, some of them exhibiting Ca(2+)-dependent activity. The present study focused on one 47 kDa protein kinase with a Ca(2+)-independent activity, closely related to the MAPK family. After purification and microsequencing, this protein kinase was formally identified as SIPK (salicyclic acid-induced protein kinase), a biotic and abiotic stress-activated MAPK of tobacco. We also showed that cytosolic activation of SIPK is not sufficient to promote a nuclear SIPK activity, the latter being correlated with cell death. In that way, the present study provides evidence of a functional nuclear MAPK activity involved in response to an elicitor treatment.  相似文献   

11.
We have previously shown that concentrations of 1alpha,25-dihydroxyvitamin D(3) (1,25D) that induce G(0)/G(1) cell cycle arrest in androgen-dependent LNCaP prostate cancer cells also decrease expression of c-Myc, a proto-oncogene that stimulates progression from G(1) to S phase of the cell cycle. Since both c-Myc expression and cell cycle progression are regulated by tyrosine kinase activation, we examined the ability of 1,25D to alter tyrosine kinase signaling in LNCaP cells and the androgen-independent LNCaP C81 (C81 LN) cell line. 1,25D selectively reduced protein tyrosine phosphorylation within both the LNCaP and C81 LN cells. This reduction in tyrosine kinase signaling appears to result from elevated levels of cellular prostatic acid phosphatase (PAcP). Western blots and biochemical assays revealed 1,25D increases the level of active PAcP in both cell lines. In addition, 1,25D decreased tyrosine phosphorylation of HER-2, an EGFR family member inactivated by PAcP, and the HER-2 downstream adaptor protein p52 Shc in C81 LN cells. Inhibition of HER-2 signaling by AG825 reduces growth of C81 LN cells and the parental LNCaP cells. These data therefore suggest that 1,25D-mediated decreases in LNCaP and C81 LN cell growth are in part due to decreases in tyrosine kinase signaling that result from up-regulation of PAcP.  相似文献   

12.
This communication identifies, for the first time, a receptor protein for signal perception from the P(II) signal transduction protein in the cyanobacterium Synechococcus elongatus. P(II), a phosphoprotein that signals the carbon/nitrogen status of the cells, forms a tight complex with the key enzyme of the arginine biosynthetic pathway, N-acetylglutamate (NAG) kinase. In complex with P(II), the catalytic activity of NAG kinase is strongly enhanced. Complex formation does not require the effector molecules of P(II), 2-oxoglutarate and ATP, but it is highly susceptible to modifications at the phosphorylation site of P(II), Ser-49. Stable complexes were only formed with the non-phosphorylated form of P(II) but not with Ser-49 mutants. In accordance with these data, NAG kinase activity in S. elongatus extracts correlated with the phosphorylation state of P(II), with high NAG kinase activities corresponding to non-phosphorylated P(II) (nitrogen-excess conditions) and low activities to increased levels of P(II) phosphorylation (nitrogen-poor conditions), thus subjecting the key enzyme of arginine biosynthesis to global nitrogen control.  相似文献   

13.
14.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

15.
M H Melner  W A Lutin  D Puett 《Life sciences》1982,30(23):1981-1986
Epidermal growth factor (EGF) and cyclic AMP were found to stimulate distinct protein kinase activities in plasma membranes prepared from the M5480P murine Leydig cell tumor. EGF stimulated the phosphorylation of two protein bands with apparent molecular weights of 60,000 and 180,000, while cyclic AMP stimulated the phosphorylation of a minor component of molecular weight 220,000. The two types of kinases could also be distinguished on the basis of differential susceptibility to conditions of membrane preparation. These results suggest that EGF stimulates a cyclic AMP-independent protein kinase in murine Leydig cell tumors at the level of the plasma membrane.  相似文献   

16.
Protein phosphorylation and protein kinase C (PKC) levels were analyzed in intact cultures of spontaneously transformed, chemically transformed, and untransformed mouse pulmonary epithelial cell lines. It was found that although the transformed cell lines contained about 80% less protein kinase C, measured as total enzyme activity or binding of [3H]phorbol ester, phosphorylation events after phorbol ester treatment could still be easily detected. A commonly described Mr 80-kDa protein kinase C substrate (p80, 80 K, MARKS) was identified using 2D-PAGE, following phosphorylation in intact cells, and found to have reduced availability for phosphorylation in the transformed cell lines C4SE9, C1SA5 and NULB5 in comparison to the untransformed C4E10 and C1C10. Available levels of p80 were further analyzed in heat-denatured extracts from all cell lines using partially purified bovine brain PKC and correlated well with changes seen in intact cells. It was also noted that all transformed cell lines contained large amounts of a family of phosphoproteins of Mr 55-65 kDa, that could not be detected in the untransformed cell lines and whose phosphorylation state was increased by protein kinase C activation. This protein was found to be located in the nucleus. Hence, spontaneously and chemically transformed mouse pulmonary epithelial cells exhibit reduced levels of PKC, along with an altered pattern of PKC-mediated phosphorylation.  相似文献   

17.
Several sarcoma-inducing viruses encode protein kinases that phosphorylate tyrosine residues. Such enzymatic activities can be detected within the detergent-insoluble matrix of transformed fibroblasts. We have analysed the protein kinase activities in two murine lymphoma cell lines ( MBL2 and LSTRA) induced by Moloney murine leukemia virus (Mo-MuLV). After incubation of the detergent-insoluble matrix of these cells with [gamma-32P]ATP, several alkali-resistant phosphoproteins, including a very heavily labelled 55 000 mol. wt. protein ( p55 ), have been detected in LSTRA, reflecting the activity of a protein kinase specific to this cell line. This protein kinase activity shares some of the distinctive properties of the protein kinases of transforming viruses, i.e., specificity for tyrosine residues, association with membranous and/or cytoskeletal structures, and inhibition by a synthetic peptide derived from the phosphorylation site of pp60src. In view of the absence of a transforming gene in MoMuLV , it is likely that the high level of protein kinase detected in the LSTRA cell line arises from the expression of a cellular gene.  相似文献   

18.
Ultrasensitive detection of minute amounts of phosphorylated proteins and peptides is a key requirement for unraveling many of the most important signal transduction pathways in mammalian systems. Protein microarrays are potentially useful tools for sensitive screening of global protein expression and post-translational modifications, such as phosphorylation. However, the analysis of signaling pathways has been hampered by a lack of reagents capable of conveniently detecting the targets of protein kinases. Historically, phosphorylation detection methods have relied upon either radioisotopes ((gamma-(32)P)ATP(gamma-(33)P)ATP labeling) or phosphoamino acid-selective antibodies. Both of these methods suffer from relatively well-known shortcomings. In this study, a small molecule fluorophore phosphosensor technology is described, referred to as Pro-Q Diamond dye, which is capable of ultrasensitive global detection and quantitation of phosphorylated amino acid residues in peptides and proteins displayed on microarrays. The utility of the fluorescent Pro-Q Diamond phosphosensor dye technology is demonstrated using phosphoproteins and phosphopeptides as well as with protein kinase reactions performed in miniaturized microarray assay format. Instead of applying a phosphoamino acid-selective antibody labeled with a fluorescent or enzymatic tag for detection, a small, fluorescent probe is employed as a universal sensor of phosphorylation status. The detection limit for phosphoproteins on a variety of different commercially available protein array substrates was found to be 312-625 fg, depending upon the number of phosphate residues. Characterization of the enzymatic phosphorylation of immobilized peptide targets with Pro-Q Diamond dye readily permits differentiation between specific and non-specific peptide labeling at picogram to subpicogram levels of detection sensitivity.  相似文献   

19.
20.
目的:研究髓样分化蛋白2(MD2)基因沉默对高糖(HG)诱导的大鼠心肌细胞增殖抑制、凋亡及炎症反应的影响及其机制。方法:体外大鼠心肌细胞系H9C2细胞随机分为4组(n=3):LG组、HG组、HG + NC组、HG + si-MD2组,分别转染MD2基因小干扰RNA(si-MD2)或阴性对照24 h后进行低糖或高糖处理48 h。RT-qPCR检测MD2及细胞内炎症细胞因子TNF-α、IL-1β、IL-6的表达水平,MTS法、流式细胞术检测细胞增殖能力、细胞周期和细胞凋亡率,Western blot法检测细胞内相关蛋白的表达水平及磷酸化水平。结果:转染si-MD2后,H9C2细胞中MD2的表达水平明显下降(P<0.01)。与低糖(LG)组比较,高糖处理后的H9C2细胞中TNF-α、IL-1β、IL-6的mRNA水平显著升高,细胞增殖能力下降并发生G1期阻滞,细胞凋亡率和Cleaved Caspase-3蛋白水平升高(P< 0.01)。而MD2基因沉默可拮抗高糖对H9C2细胞增殖、细胞周期、凋亡及细胞中TNF-α、IL-1β、IL-6 mRNA水平的影响(P<0.05)。Western blot测定结果表明高糖处理后的H9C2细胞中细胞外信号调节激酶(ERK1/2)、P38丝裂原活化蛋白激酶(P38 MAPK)和C-Jun氨基末端激酶(JNK)蛋白的磷酸化水平明显升高,而MD2基因沉默可抑制高糖诱导下的ERK1/2、P38 MAPK和JNK蛋白激活(P<0.01)。结论:MD2基因沉默可能通过抑制ERK、P38 MAPK和JNK信号通路的激活来减少高糖诱导的大鼠心肌细胞炎症细胞因子表达,减少心肌细胞凋亡,促进细胞增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号