首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for quantification of 6-keto-PGF, 2,3-dinor-6-keto-PGF, TXB2, 2,3-dinor TXB2, PGE2, PGD2 and PGF in human urine samples, using gas chromatography—negative ion chemical ionization mass spectrometry, is described. Deuterated analogues were used as internal standards. Methoximation was carried out in urine samples which were subsequently applied to phenylboronic acid cartridges, reversed-phase cartridges and thin-layer chromatography. The eluents were further derivatized to pentafluorobenzyl ester trimethylsilyl ethers for final quantification by gas chromatography—mass spectrometry. The overall recovery was 77% for tritiated 6-keto-PGF and 55% for tritiated TXB2. Urinary levels of prostanoids were determined in a group of six volunteers before and after intake of the thromboxane synthase inhibitor Ridogrel, and related to creatinine clearance.  相似文献   

2.
Endogenous prostacyclin production is best assessed by the measurement of its excreted metabolites, of which a major one is 2,3-dinor-6-ketoprostaglandin F (2,3-dinor-6-keto-PGF). Gas chromatographic—mass spectrometric (GC—MS) assays have been developed for this compound but are cumbersome and time-consuming. We now report a modified assay for the measurement of 2,3-dinor-6-keto-PGF employing GC—MS in which sample preparation time is markedly shortened by replacing a number of extraction steps with reversed-phase column extraction and by modifying derivatization procedures. Precision of the assay is ± 5% and the accuracy is 98%. The lower limit of detection in urine is approximately 15 pg/mg creatinine. Normal urinary levels of this metabolite were found to be 141 ± 54 pg/mg creatinine (mean ± S.D.). Urinary excretion of 2,3-dinor-6-keto-PGF is markedly altered in situations associated with abnormalities of prostacyclin generation when quantified using this assay. Thus, this assay provides a sensitive and accurate method to assess endogenous prostacyclin production and to further explore the role of this compound in human health and disease.  相似文献   

3.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p < 0.05) from 14.2 ± 4.0 to 86.2 ± 20.7, PGF2α from 60.0 ± 4.9 to 119.8 ± 24.0, 6-keto-PGF from 7.2 ± 1.3 to 51.5 ± 17.0, and txB2 from 11.2 ± 3.3 to 13.6 ± 3.6 ng/h/1.73 m2 ( ) at the maximal urine flow. Except for 6-keto-PGF and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged peroid of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

4.
We report a convenient and efficient method for the preparation of prostaglandin 2,3-dinor-6-keto-F1α by incubating prostaglandin 6-keto-PGF1α (6-keto-PGF1α) with dispersed rat hepatocytes. Chromatographic separation revealed a single product from the hepatocyte metabolism of 6-keto-PGF1α whose structure was positively confirmed by mass spectrometry as 2,3 dinor-6-keto-PGF1α. This methods allowed for the preparation of high specific activity radioactive 2,3-dinor-6-keto-PGF1α which can be utilized to determine the recovery of urinary dinor-6-keto-PGF1α during extraction and separation of the compound for radioimmunoassay measurements, as well as deuterated 2,3-dinor-6-keto-PGF1α which can be used as an internal standard in the gas chromatography-mass spectrometric assay of this compound.  相似文献   

5.
The cross-reactivity of the PGI3 metabolite, Δ17-6-keto-PGF, with antibodies against 6-keto-PGF for radioimmunoassays (RIA) has been investigated. Δ17-6-keto-PGF was obtained either from commercial sources or after its purification from endothelial cells. In the latter case, primary cultured bovine aortic endothelial cells were incubated for 20 min at 37°C with 10 μM eicosapentaenoic acid (EPA) in the presence of 2 μM 13-hydroperoxy-octadecadienoic acid, an activator of the EPA cyclooxygenation, and the 6-keto-PGF and Δ17-6keto-PGF produced were separated by RP-HPLC. Then, cross-reactivities of the commercial and purified Δ17-6-keto-PGF with 6-keto-PGF antibodies were determined and found not to exceed 10%. In addition, the amounts of prostacyclin-related compounds detected by direct measurements in media of cells loaded with EPA were compared with those obtained after purification of 6-keto-PGF. In accordance with the cross-reactivity data, we found that RIA in media mainly measured 6-keto-PGF, the Δ17-6-keto-PGF formed being undetected at 90%. It is concluded that 6-keto-PGF antibodies generally used for RIA of 6-keto-PGF are highly specific since they can discriminate a metabolite bearing an additional double bond such as the PGI3 metabolite Δ17-6-keto-PGF.  相似文献   

6.
The pulmonary formation of prostacyclin (PGI2), as reflected by the difference in concentration of pulmonary and systematic arterial radioimmunoassayed 6-keto-PGF, was determined in six healthy waking subjects. The systematic arterial 6-keto-PGF levels were low (50 pg/ml), and no evidence of pulmonary formation and release of the compound was noted. In other experiments systemic arterial 6-keto-PGF levels were determined in patients prior to and during artificial ventilation, as well as during and after occlusion of the pulmonary circulation (extra-corporeal circulation, ECC). The arterial 6-keto-PGF concentration prior to artificial ventillation was 17±4 pg/ml, i.e. within the range observed in the healthy subjects. During artificial ventilation the arterial levels of 6-keto-PGF increased to 191±21 pg/ml, suggesting that pulmonary formation of PGI2 was stimulated. In the patients subjected to ECC with occluded pulmonary circulation the arterial content of 6-keto-PGF was stabilised at an elevated level (120−170 pg/ml). Following re-establishment of the pulmonary circulation the arterial concentrations of 6-keto-PGF increased markedly, to 284±50 pg/ml. It is suggested that the basal pulmonary formation of PGI2 in man is low or non-existent, and that enhanced formation of the compound in the lungs is a consequence of intervention with normal pulmonary ventilation or perfusion.  相似文献   

7.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

8.
Abortion or delivery were induced by extra-amniotic instillation of Rivanol during the second trimester in twelve patients and during the third trimester in two patients with fetal death and one patient with fetal acrania. Serial sampling of amniotic fluid was performed through a transabdominal catheter and the levels of free arachidonic acid (AA), prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) were determined. The levels of AA, PGF2α, PGE2, 6-keto-PGF1α and TXB2 in amniotic fluid increased significantly during induction with the exception of AA in fetal death which was high and remained constant during induction. Furthermore, PGF2α, 6-keto-PGF1α and TXB2 were all significantly correlated to AA.These observations suggested that free AA is released during Rivanol-induction of abortion and labour giving an increased synthesis of PGF2α, PGE2 prostacyclin and thromboxane A2 in the fetal membranes and the decidua but not in the fetus. This increase might be relevant for the initiation and progress of abortion and labour in these patients.  相似文献   

9.
Bovine gastric mucosal and muscle microsomes synthesize prostaglandins and thromboxane B2 (TXB2) from arachidonic acid (AA). TXB2 and 6-keto-prostaglandin F1α (6-keto-PGF1α) were the major products synthesized by pylorus, body, and cardiac region of the gastric mucosa. Gastric muscle mainly synthesized 6-keto-PGF1α. TXB2 and 6-keto-PGF1α synthesis occurs at an appreciable rate from endogenous precursors but more rapidly with added arachidonate. Prostaglandins E2, F2α and D2 were synthesized in smaller amounts under the conditions studied.  相似文献   

10.
We investigated the effects of a new pyridoquinazoline thromboxane synthetase inhibitor infused before administering endotoxin into 18 anesthetized sheep with lung lymph fistulas. In normal sheep increasing plasma Ro 23-3423 concentrations were associated with increased plasma levels of 6-keto-PGF, a reduced systemic vascular resistance (SVR, r = −0.80) and systemic arterial pressure (SAP, r = −0.92), the mean SAP falling from 80 to 50 mm Hg at the 20 and 30 mg/kg doses. Endotoxin infused into normal sheep caused transient pulmonary vasoconstriction associated with increased TxB2 and 6-keto-PGF levels while vasoconstriction and TxB2 increase were significantly inhibited by pretreatment with Ro 23-3423 in a dose-dependent manner. When compared to controls, plasma and lymph levels of 6-keto-PGF, PGF and PGE2 after endotoxin infusion were increased several-fold by administering Ro 23-3423 up to plasma levels of 10 μg/ml. Doses over 30 mg/kg with blood levels above 10 μg/ml reduced plasma and lymph levels of 6-keto-PGF, PGF and PGE2, suggesting cyclooxygenase blockade at this dose. The peak 6-keto-PGF levels at 60 min after endotoxin infusion in sheep with Ro-23-3423 levels below 10 μg/ml were associated with the greatest systemic hypotension due to a reduced SVR (r = −0.86). After endotoxin infusion the leukotrienes B4, C4, D4 and E4 in lung lymph were assayed by radioimmunoassay and high pressure liquid chromatography and remained at baseline values.  相似文献   

11.
The endogenous formation of prostaglandin (PG) D2, E2, F, and 6-keto-PGF was determined in homogenates of mouse, rat, and rabbit brain, and of rat cerebral blood vessels, using gas chromatography mass spectrometry. In all species tested, 6-keto-PGF could be identified in the brain homogenates, but was a minor component in relation to other PGs. In contrast 6-keto-PGF was the most abundant PG in the blood vessels, being present in about 40-fold higher levels than in the brain tissue. PGD2 was the most abundant PG in rat and mouse brains, but was below detection limits in the analyzed blood vessels. These studies indicating differential metabolism of PG endoperoxides in nervous and vascular tissue, provide a biochemical basis for further studies on the role of the PGs in brain circulation and neuronal activity.  相似文献   

12.
Cyclo-oxygenase products of arachidonic acid metabolism formed by the pericardium and epicardial surface of dog heart were identified and quantitated by radioimmunoassay after separation by high-pressure liquid chromatography. Pieces of pariental pericardium, of dog, ox and rat, when incubated produced mainly 6-keto-PGF, with lesser amounts of PGE2, PGF and thromboxane B2. Biosynthesis of all prostanoids increased during incubation of the pariental pericardium of each species with arachidonic acid, but 6-keto-PGF was still the major metabolite. When slices of dog heart were incubated with arachidonic acid (1 μg/ml) the rates of 6-keto-PGF formation by the pariental pericardium was much greater than that of the myocardium and endocardium. Epicardial slices appeared to be intermediate in 6-keto-PGF formation. The hearts of anesthetized dogs were also irrigated with Krebs' solution, and during the first 5 min of epicardial irrigation the pericardial fluid leaving the heart again contained high levels of 6-keto-PGF, with lesser amounts of the other prostanoids. Addition of arachidonic acid (3 μg/ml) to the irrigating fluid caused an increase in all measured prostanoid levels, although 6-keto-PGF remained the predominant metabolite. In contrast, intravenous infusion of isoproterenol selectively increased the release of 6-keto-PGF from the irrigated heart. It is concluded that the pericardium and epicardium continuously release prostacyclin into the pericardial fluid, and that the increased release of this substance observed when cardiac workload increases derives mainly from these membranous sources. This raises the interesting possibility that pericardial prostacyclin might influence coronary vascular tone and chemoreflexes which arise from the epicardium during myocardial ischemia.  相似文献   

13.
The relationship between high glucose concentrations and arachidonic acid metabolism in uterine tissue from control and diabetic ovariectomized rats was evaluated. Uterine tissue from diabetic rats produced amounts of PGE2 and PGF similar to controls, while a lower production of 6-keto-PGF (indicating the production of prostacyclin) and a higher production of TXB2 (indicating the generation of TXA2) was found in the diabetic group. A group of diabetic rats was treated with phlorizin to diminish plasma glucose levels. Phlorizin treatment did not alter production of PGE2, PGF, and 6-keto-PGF in the diabetic group. A diminished production of TXB2 was found in the treated diabetic uteri when compared to the non-treated diabetic group. Moreover, a positive correlation between plasma glucose levels and uterine TXB2 generation was observed. When control uterine tissue was exposed in vitro to high concentrations of glucose (22 mM) and compared to control tissue incubated in the presence of glucose 11 mM alterations in the generation of PGE2, PGF, and 6-keto-PGF were not found, but a higher production of TXB2 was observed and values were similar to those obtained in the diabetic tissue. Alteration in the production of the prostanoids evaluated were not observed when diabetic tissue was incubated in the presence of high concentrations of glucose. These results provide evidence of a direct relationship between plasma glucose levels and uterine production of TXA2.  相似文献   

14.
F2-Isoprostanes are stable lipid peroxidation products of arachidonic acid, the quantification of which provides an index of oxidative stress in vivo. We describe a method for analysing isoprostaglandin F type III (15-F2t-IsoP) in biological fluids. The method involves solid-phase extraction on octadecyl endcapped and aminopropyl cartridges. After conversion to trimethylsilyl ester trimethylsilyl ether derivatives, isoprostaglandin F type III is analysed by mass spectrometry, operated in electronic impact selected ion monitoring mode. We have compared enzyme immunoassay (EIA; Cayman, Ann Arbor, MI, USA) to this method with 30 human urine aliquots following the same extraction procedure in order to determine the agreement between both methods. Isoprostaglandin F type III concentrations determined with gas chromatography–mass spectrometry (GC–MS) did not agree with those determined with EIA. Our results suggest that GC–MS and EIA do not measure the same compounds. As a consequence, comparison of clinical results using GC–MS and EIA should be avoided.  相似文献   

15.
Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF urinary metabolites included dinor-6-keto-PGF (∼10%) and dinor-13,14-dihydro-6,15-diketo-PGF (∼10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases.  相似文献   

16.
Two groups of 40 volunteers were given a dietary supplement consisting of 135 g of mackerel or meat (control) paste per day for 6 weeks. Compliance was about 80% in both groups and the daily intake of 20:5(n−3) and 22:6(n−3) from the mackerel supplement was about 1.3 and 2.3 g, respectively. In collagen-activated platelet rich plasma, the potency of blood platelet to produced HHT from arachidonic acid (AA) clearly reduced in the mackerel group, whereas the formation of HHTE from timnodonic acid (TA) increased slightly. Changes in the formation of HHT and HHTE, measured by HPLC, correlated significantly with those of TxB2 and TxB3, respectively, measured by GC/MS. Changes in the formation of the lipoxygenase products HETE (ex AA) and HEPE (ex TA) were qualitatively similar to that seen for the cyco-oxygenase products, but quantitatively the responses were smaller. Formation of ir TxB2 in clotting blood significantly reduced in the mackerel group. In collagen-activated, citrated whole blood, TxB2 formation tended to be reduced in the mackerel-supplemented volunteers. Mackerel consumption was associated with the formation of considerable amounts of PGl3, as judged from the appearance of 2,3-dinor-Δ 17-6-keto-PGF in urine. The amount of the major metabolite of PGl2, 2,3-dinor-6-keto-PGF was not reduced, or even increased. The daily amount of tetranor prostaglandin metabolites in the urine did not change significantly, which indicates that mackerel supplementation did not alter the formation of prostaglandins E and F.  相似文献   

17.
We microanalyzed 2,3-dinor-6-keto-prostaglandin F (2,3-dinor-6-keto-PGF 1) and 11-dehydrothromboxane B2 (11-dehydro-TXB2, 2) in human urine. Samples containing a [2H4]-analogue as an internal standard were extracted by chromatography using Sep Pak tC18 and silica gel. The compounds were then analysed by means of the lactone ring opening reaction and dimethylisopropylsilylation. The conversion of 1 to 1-methyl ester (ME)-propylamide (PA)-9,12,15-dimethylisopropylsilyl (DMIPS) ether derivative and of 2 to 1-ME-6-methoxime (MO)-9,12,15-tris-DMIPS ether derivative was followed by gas chromatography/selected ion monitoring (GC/SIM). Interfering substances from the urine matrix were eliminated during GC/SIM analysis using a DB-5 column. We were able to detect 1 (222–1031 pg/mg creatinine) and 2 (18–155 pg/mg creatinine) in human urine. Furthermore, the thromboxane/prostacyclin (IX/PGI) ratio in the urine of diabetics was higher than that of healthy volunteers. This method can be used to determine the TX/PGI balance in human urine.  相似文献   

18.
A simple procedure based upon capillary column gas chromatography-mass spectrometry (GC—MS) is described for the detection and determination of isatin (indole-2,3-dione) in body fluids and tissues. After addition of 5-methylisatin as internal standard to urine or tissue homogenates, organic extracts are dried and derivatized successively with hydroxylamine hydrochloride and the reagent N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). The tert.-butyldimethylsilyl derivatives obtained show good GC—MS properties and allow quantification by selected-ion monitoring of m/z 333 (isatin) and m/z 347 (internal standard). Adult and newborn human urine output values lie in the ranges 0.4–3.2 mg/mmol of creatinine (5–30 mg per 24 h) and 0.002–0.518 mg/mmol of creatinine, respectively. There is a discontinuous regional distribution in rat tissues. The GC—MS properties of a number of derivatives formed by successive reaction of isatin with hydroxylamine hydrochloride (or methoxyaminehydrochloride or ethoxyamine hydrochloride) and MTBSTFA, bis(trimethylsilyl)trifluoroacetamide, pentafluoropropionic anhydride or pentafluorobenzyl bromide are also described.  相似文献   

19.
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF were identified in all samples. 6-keto-PGF to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P<0.01). Arachidonate stimulation increased 6-keto-PGF and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF. This caused 6-keto-PGF to TXB2 ratio to decline (p<0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than by the intact vein probably reflecting contribution from non-endothelial layers, and 3) arachidonate stimulation causes relatively greater release of TXA2 than of PGI2 from the venous rings, whereas release of PGI2 and TXA2 is similar from the intact vein.  相似文献   

20.
Pulmonary arterial prostacyclin (as 6-keto-PGF) concentrations of near term, fetakl lambs and goats were determined following fetal surgery and 24, 48, and 72 hrs later. Blood gases, pH, and arterial pressure were determined also. At the end of 2.5 hrs of surgery including exteriorization of the uterus and fetal thorocotomy, pulmonary arterial concentrations of 6-keto-PGF was 948 ± 92 (SEM) pg/ml of blood. Twenty-four hrs later it had fallen to 435 ± 92 pg/ml and remained constant for the duration of monitoring. Maternal arterial 6-keto-PGF concentration was much lower (105 ± 20 pg/ml of blood). No significance changes in fetal PaO2, PaCO2, pH, or arterial pressure were observed, although PaCO2 appeared to be elevated and pH reduced following surgery. These values normalized within 24 hrs. We conclude that surgical perturbation increases fetal arterial prostacyclin concentration. Increased prostacyclin levels are transient, reaching stable values within 24 hrs following completion of extensive surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号