首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton NMR spectra of a dimeric phospholipase A2 from Trimeresurus flavoviridis have been recorded. N-1 proton resonances of the tryptophan indole rings have been detected and assigned to specific positions, Trp-3/Trp-30, Trp-68 and Trp-108, by comparing the spectra of the enzyme derivatives with tryptophans oxidized to differing extents. Photo-CIDNP experiments have revealed that Trp-68 and Trp-108 are exposed while Trp-3 and Trp-30 are buried in the molecule. This is consistent with the X-ray crystal structure of a homologous phospholipase A2 from Crotalus atrox where residues 3 and 30 are located at a dimer interface, but inconsistent with the results of stepwise oxidation of tryptophan residues.  相似文献   

2.
Three phospholipases A2 purified from cobra venoms and two presynaptically acting neurotoxins that exhibit phospholipase A2 activity were subjected to tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Associated with the modification of an increasing number of Trp residues were marked decreases in enzymatic activity and lethality, whereas antigenicity remained unchanged. The degree of exposure of tryptophanyl groups as determined by acrylamide quenching was consistent with the relative reactivity toward 2-hydroxy-5-nitrobenzyl bromide, except for Hemachatushaemachatus phospholipase A2, which showed unusually high reactivity due to its characteristic dimeric conformation. Difference spectra of Trp-modified derivatives differed from those of their native enzymes by the presence of a new positive perturbation between 350 and 500 nm, with a maximum at 415 nm. Scatchard plots revealed only one type of binding site for Ca2+, and the binding abilities of the modified enzymes were not impaired. At pH 8.0, all native enzymes enhanced the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, and the emission intensity of the ANS-enzyme complex increased or decreased in parallel with increasing concentration of Ca2+ for the respective enzyme. The Trp-modified derivatives did not enhance the emission intensity of ANS at all either in the presence or absence of Ca2+. By means of tryptophan modification, we were able to infer that the tryptophan residues are in the vicinity of the Ca2+ binding site and are directly involved in the binding with ANS. This, together with the suggestion that the hydrophobic pocket that interacts with ANS might be the site of binding of the phospholipase A2 enzyme with the substrate, suggests that the Trp residues in phospholipase A2 enzymes and presynaptic toxins are involved in substrate binding.  相似文献   

3.
When phospholipase A2 from the venom of Trimeresurus flavoviridis (the Habu snake) was oxidized with N-bromosuccinimide at pH 4.0, its activity decreased linearly with increase in the extent of oxidation of tryptophan residues. Oxidation of two of the four tryptophan residues caused an apparent loss of activity. The accessibilities of the tryptophan residues were analyzed with differently oxidized phospholipase A2 preparations and were determined to be in the following order: Trp-3 approximately Trp-30 greater than Trp-68 greater than Trp-108. The magnitude of the difference spectrum with a negative peak at 292 nm which is produced upon the binding of Ca2+ in the vicinity of tryptophan residue(s) decreased in a concave manner with increase in the extent of oxidation of tryptophan residues and was greatly diminished when 2 mol of tryptophan residues were oxidized. The activity and Ca2+-induced difference spectrum are thus related to either Trp-3 or Trp-30 or both. Des-octapeptide(1-8)-phospholipase A2 (L-fragment) is 14% as active as phospholipase A2 and is able to give a Ca2+-induced difference spectrum which is smaller than, but similar to, that of phospholipase A2. Its activity and the magnitude of the Ca2+-induced difference spectrum decreased along similar paths with increase in the amount of tryptophan residues oxidized, but in a manner indicating that two tryptophan residues are apparently responsible for the activity and the Ca2+-induced difference spectrum. The order of accessibility of the tryptophan residues of L-fragment was Trp-30 approximately Trp-108 greater than Trp-68. Trp-108, however, could be excluded from the residues located in the active site by reference to the tertiary structure of homologous Crotalus atrox phospholipase A2. Thus, Trp-30 is located in the Ca2+ binding site and is responsible for the activity of L-fragment. It is thus concluded that in phospholipase A2 Trp-30 is located in the Ca2+ binding site. From the concave decrease of relative magnitude of the Ca2+-induced difference spectrum and the linear decrease of relative activity upon oxidation of phospholipase A2, it may be assumed that both Trp-3 and Trp-30 are required to produce the Ca2+-induced difference spectrum, while only Trp-30 need be intact for activity. Anomalous binding of Ca2+ was observed for oxidized phospholipase A2.  相似文献   

4.
The complete amino acid sequence of bothropstoxin-II (BthTX-II), a myotoxin isolated from Bothrops jararacussu snake venom, is reported. The results show that BthTX-II is an Asp-49 phospholipase A2 (PLA2)-like protein composed of a single polypeptide chain of 120 amino acid residues (M r = 13,976), containing one methionine and 14 half-cystines. Despite a high degree of homology with other PLA2's and the presence of the strategic residues known to compose the Ca2+-binding loop, namely Tyr-28, Gly-30, Gly-32, and especially Asp-49, besides His-48, Tyr-52, and Asp-99, all of them directly or indirectly involved in catalysis, BthTX-II revealed a very low PLA2 activity when assayed on egg yolk phosphatidylcholine. We attribute this low catalytic activity to the existence of extra mutations, e.g., Trp-5 for Phe-5, which points to the need of considering other strategic positions, since only Lys-49 PLA2's have been considered to be devoid of this enzymatic activity.  相似文献   

5.
Phospholipases A2 may exist in solution both as monomers and dimers, but enzymes that form strong dimers (K D approximately 10–9 M) have been found, thus far, only in venoms of the snake family Crotilidae. The complete amino acid sequences of a basic monomeric and an acidic dimeric phospholipase A2 fromAgkistrodon piscivorus piscivorus (American cotton-mouth water moccasin) venom have been determined by protein sequencing methods as part of a search for aspects of structure contributing to formation of stable dimers. Both the monomeric and dimeric phospholipases A2 are highly homologous to the dimeric phospholipases A2 fromCrotalus atrox andCrotalus adamanteus venoms, and both have the seven residue carboxy-terminal extension characteristic of the crotalid and viperid enzymes. Thus, it is clear that the extension is not a prerequisite for dimerization. Studies to date have revealed two characteristic features of phosphilipases A2 that exist in solution as strong dimers. One is the presence in the dimers of a Pro-Pro sequence at position 112 and 113 which just precedes the seven residue carboxy-terminal extension (residues 116–122). The other is a low isoelectric point; only the acidic phospholipases A2 have been observed, thus far, to form stable dimers. These, alone or together, may be necessary, though not sufficient conditions for phospholipase A2 dimer formation. Ideas regarding subunit interactions based upon crystallographic data are evaluated relative to the new sequence information on the monomeric and dimeric phospholipases A2 fromA. p. piscivorus venom.  相似文献   

6.
Phenol oxidase exists in Drosophila hemolymph as a prophenol oxidase, A1 and A3, that is activated in vivo with a native activating system, AMM-1, by limited proteolysis with time. The polypeptide in purified prophenol oxidase A3 has a molecular weight of approximately 77,000 Da. A PCR-based cDNA sequence coding A3 has 2501 bp encoding an open reading frame of 682 amino acid residues. The potential copper-binding sites, from Trp-196 to Tyr-245, and from Asn-366 to Phe-421, are highly homologous to the corresponding sites in other invertebrates. The availability of prophenol oxidase cDNA should be useful in revealing the biochemical differences between A1 and A3 isoforms in Drosophila melanogaster that are refractory or unable to activate prophenol oxidase.  相似文献   

7.
A series of inhibitors of glucosylceramide synthesis, the PDMP based family of compounds, has been developed as a tool for the study of sphingolipid biochemistry and biology. During the course of developing more active glucosylceramide synthase inhibitors, we identified a second site of inhibitory activity for PDMP and its structural homologues that accounted for the ability of the inhibitors to raise cell and tissue ceramide levels. This inhibitory activity was directed against a previously unknown pathway for ceramide metabolism, viz. the formation of 1-O-acylceramide. In this pathway the addition of a fatty acyl group to the primary hydroxyl of ceramide occurs through a transacylation with either phosphatidylethanolamine or phosphatidylcholine as a substrate. However, both in the absence and presence of ceramide, water serves as an acceptor for the fatty acid. Thus the enzyme may be considered to be a phospholipase A2. The enzyme is unique in that it has an acidic pH optimum and is localized to lysosomes by cell fractionation. More recently, the 1-O-acylceramide synthase has been purified, sequenced, and cloned. This phospholipase A2 was discovered to be structurally homologous to lecithin cholesterol acyltransferase (LCAT). However, this phospholipase A2 does not recognize cholesterol and lacks the defined lipoprotein-binding domain present in LCAT. We now refer to this enzyme as lysosomal phospholipase A2 (LPLA2). Although acidic phospholipase A2 activities have been previously identified, LPLA2 appears to be the first lysosomal PLA2 to have been sequenced. This new phospholipase A2 lacks an obvious and proven biological function. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

9.
The unicellular Tetrahymena enzymatically split the synthetic phosphodiester, 4-methylum-belliferyl phosphocoline substrate. The enzyme activity was completely blocked in vitro and drastically inhibited in vivo by G-protein activating fluorides (NaF; AlF4 and BeF3 ). The phospholipase A2 inhibitor, quinacrine, and the protein phosphatase inhibitor, neomycin, inhibited the enzyme activity in vitro and activated it in vivo. Another phospholipase A2 inhibitor 4-bromo phenacyl bromide was ineffective in vivo and in vitro alike, as well as the cyclooxygenase inhibitor indomethacin. Results of these experiments indicate that some treatments could be specific for a well defined activity (e.g., phospholipase A2, G-protein) but subject to influence by other enzymes (e.g., phospholipase C, sphingomyelinase). The experiments call attention to the differences in the results of the in vivo and in vitro studies.  相似文献   

10.
Phosphatidylglycerol (PG), containing the unique fatty acid Δ3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A2 to decrease the PG content. Phospholipase A2 treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor QA to the secondary quinone acceptor QB, (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A2 treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A2 brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the QB-binding site.  相似文献   

11.
A novel phospholipase A2, designated as Oh-DE-2, was isolated from the venom ofOphiophagus hannah (king cobra) by successive chromatography on SP-Sephadex C-25, DE-52, and Q-Sepharose columns. Oh-DE-2 with pI 5.1 showed an apparent molecular weight of 14 kD as revealed by SDS-PAGE and gel filtration. The amino acid sequence was homologous with those of PLA2s from Elapidae venoms. Oh-DE-2 was effectively inactivated byp-bromophenacyl bromide, indicating that the conserved His-48 is essential for its enzymatic activity. However, modification of the conserved Trp-19 did not cause a precipitous drop in the enzymatic activity of Oh-DE-2 as observed with PLA2s fromNaja naja atra andBungarus multicinctus venoms. A quenching study showed that the microenvironment of Trp in Oh-DE-2 was inaccessible to acrylamide, iodide, or cesium, a finding which was different from those observed with PLA2s fromN. naja atra andB. multicinctus venoms. These results might suggest that, unlike other PLA2 enzymes, Trp-19 in Oh-DE-2 is not directly involved in its enzymatic mechanisms.  相似文献   

12.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

13.
The secreted phospholipases A2 (sPLA2s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A2 (hsPLA2-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA2-IID in Escherichia coli, the DNA-coding sequence for hsPLA2-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA2-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A2. The refolded recombinant hsPLA2-IID demonstrated Ca2+-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA2-IID which will advance our understanding of the structure–function relationship and biological effects of the protein.  相似文献   

14.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   

15.
Enhancing factor (EF) protein, an isoform of secretory phospholipase A2 (PLA2), was purified as a modulator of epidermal growth factor from the small intestine of the Balb/c mouse. It was for the first time that a growth modulatory property of sPLA2 was demonstrated. Deletion mutation analysis of EF cDNA carried out in our laboratory showed that enhancing activity and phospholipase activity are two separate activities that reside in the same molecule. In order to study the specific amino acids involved in each of these activities, two site-directed mutants of EF were made and expressedin vitro. Comparison of enhancing activity as well as phospholipase A2 activity of these mutant proteins with that of wild type protein helped in identification of some of the residues important for both the activities.  相似文献   

16.
Erik Kish-Trier 《FEBS letters》2009,583(19):3121-3126
The peripheral stalk of the archaeal ATP synthase (A1A0)-ATP synthase is formed by the heterodimeric EH complex and is part of the stator domain, which counteracts the torque of rotational catalysis. Here we used nuclear magnetic resonance spectroscopy to probe the interaction of the C-terminal domain of the EH heterodimer (ECT1HCT) with the N-terminal 23 residues of the B subunit (BNT). The data show a specific interaction of BNT peptide with 26 residues of the ECT1HCT domain, thereby providing a molecular picture of how the peripheral stalk is anchored to the A3B3 catalytic domain in A1A0.

Structured summary

MINT-7260681: Hct (refseq:NP_393485), Ect1 (uniprotkb:Q9HM68) and Bnt (uniprotkb:Q9HM64) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

17.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

18.
Difference spectra associated with changes in pH and with binding of saccharides have been recorded for hen egg white (HEW) lysozyme, turkey egg white (TEW) lysozyme, and for the derivatives of the hen protein in which Tre-62 or Trp-108 had been oxidized specifically to oxindolealanine to give the Oxa-62 or Oxa-108-proteins. Identical pH difference spectra were obtained for HEW, TEW, and Oxa-62-lysozymes. Oxidation of Trp-108 is reflected in both the high and low pH (pH 7 versus 5 and pH 2 versus 5) difference spectra. The magnitude of the low pH difference spectrum is enhanced by binding of saccharide for HEW and Oxa-62-lysozymes but not for TEW lysozyme. The shapes and magnitudes of saccharide binding difference spectra are affected by oxidation of residues 62 or 108. These results can be interpreted in terms of the perturbations responsible for the lysozyme difference spectra. The pH 7 versus 5 difference spectrum results from perturbation by Glu-35 of Trp-108 and another tryptophan, probably Trp-63. Perturbation of Trp-108 and one or more other tryptophan residues by several carboxylate groups is responsible for the low pH difference spectra of the unliganded HEW and TEW lysozyme molecules. Perturbation of Trp-108 makes a principal contribution to the saccharide-binding difference spectrum. Perturbation of the Oxa-108 chromophore by ionization of Glu-35 or by saccharide binding produces absorbance changes in the 250 to 265 nm region.  相似文献   

19.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been shown to play a crucial role in atherosclerosis, and has been proposed as a promising target for drug discovery. Here, we cloned the Lp-PLA 2 gene from differentiated THP-1 cells, and inserted a carboxy-terminal His6-tagged version of the gene into the pPIC9 Pichia expression vector. The Lp-PLA2 fusion protein was successfully expressed in Pichia pastoris expression system and could be rapidly purified to apparent homogeneity using a single-step purification method. The activity of our recombinant Lp-PLA2 was strong when [3H] PAF was used as a substrate, and the Lp-PLA2 inhibitor SB435495 exhibited an inhibitory curve against the recombinant Lp-PLA2 (IC50=15.93±1 μM). This novel recombinant Lp-PLA2 could prove useful as a screening model for Lp-PLA2 inhibitors, and may facilitate further investigation of this protein in atherosclerosis.  相似文献   

20.
Chemically synthesized genes encodingEscherichia coli tRNA 1 Leu and tRNA 2 Leu were ligated into the plasmid pTrc99B. then transformed intoEscherichia coli MT102, respectively. The positive transformants, named MT-Leu1 and MT-Leu2, were confirmed by DNA sequencing, and the conditions of cultivation for the two transformants were optimized. As a result, leucinc accepting activity of their total tRNA reached 810 and 560 pmol/A260, respectively: the content of tRNA 1 Leu was 50% of total tRNA from MT-Leu1, while that of tRNA 2 Leu was 30% of total tRNA from MT-Leu2. Both tRNALeus from their rotal tRNs were fractionated to 1 600 pmol/A260 after DEAE-Sepharose and BD-cellulose column chromatography. The accurate kinetic constants of aminoacylation of the two isoacceptors of tRNALeu catalyzed by leucyl-tRNA synthetase were determined. Project supported by the National Natural Science Foundation of China (Grant No. 39570164).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号