首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain, were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting cell viability.  相似文献   

2.
In L929sAhFas cells, tumor necrosis factor (TNF) leads to necrotic cell death, whereas agonistic anti-Fas antibodies elicit apoptotic cell death. Apoptosis, but not necrosis, is correlated with a rapid externalization of phosphatidylserine and the appearance of a hypoploid population. During necrosis no cytosolic and organelle-associated active caspase-3 and -7 fragments are detectable. The necrotic process does not involve proteolytic generation of truncated Bid; moreover, no mitochondrial release of cytochrome c is observed. Bcl-2 overexpression slows down the onset of necrotic cell death. In the case of apoptosis, active caspases are released to the culture supernatant, coinciding with the release of lactate dehydrogenase. Following necrosis, mainly unprocessed forms of caspases are released. Both TNF-induced necrosis and necrosis induced by anti-Fas in the presence of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone are prevented by the serine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone and the oxygen radical scavenger butylated hydroxyanisole, while Fas-induced apoptosis is not affected.  相似文献   

3.
Neurotrophic factors have been shown to potentiate necrotic neuronal death in cortical cultures. In this study we characterized the death induced by various oxidative insults and tested the effects of neurotrophic factors on that death. Treatment with fibroblast growth factor-2, neurotrophin-4, or insulin-like growth factor-1 potentiated neuronal cell death induced by iron-citrate (Fe) or buthionine sulfoximine (BSO), but not ethacrynic acid (EA). Neuronal death induced by each insult was blocked by the free radical scavenger, trolox. An analysis of the death indicated that Fe and BSO induced necrotic cell death, while EA induced apoptotic cell death. BSO and EA caused decreased cellular glutathione levels, whereas Fe had no effect on glutathione levels. Neurotrophic factors had no effect on the changes in glutathione. The results indicate that oxidative insults can induce either apoptotic or necrotic death and that the effects of neurotrophic factors are dependent on the type of cell death.  相似文献   

4.
Caspase-inhibited cells induced to die may exhibit the traits of either apoptosis or necrosis or both, simultaneously. However, mechanisms regulating the commitment to these distinct forms of cell death are barely identified. We found that staurosporine induced both apoptotic and necrotic traits in U937 cells exposed to the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone. Morphology and flow cytometry revealed that individual cells exhibited either apoptotic or necrotic traits, but not the mixed phenotype. Inhibition of cathepsin activity by benzyloxycarbonyl-Phe-Ala-fluoromethylketone rendered caspase-compromised cells resistant to staurosporine-induced apoptosis, but switched the cell death form to necrosis. Inhibition of heat shock protein 90 kDa (Hsp90) chaperon activity by geldanamycin conferred resistance to necrosis in caspase-compromised cells but switched the cell death form to apoptosis. Combination of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and geldanamycin halted the onset of both forms of cell death by saving mitochondrial trans-membrane potential and preventing acidic volume (lysosomes) loss. These effects of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and/or geldanamycin on cell death were restricted to caspase-inhibited cells exposed to staurosporine but influenced neither only the staurosporine-provoked apoptosis nor hydrogen peroxide (H2O2)-generated necrosis. Our results demonstrate that the staurosporine-induced death pathway bifurcates in caspase-compromised cells and commitment to apoptotic or necrotic phenotypes depends on cathepsin protease or Hsp90 chaperon activities.  相似文献   

5.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.  相似文献   

6.
Analysis of aclarubicin-induced cell death in human fibroblasts   总被引:1,自引:0,他引:1  
In the present study we investigated the mode of cell death induced by aclarubicin (ACL) in trisomic (BB) and normal (S-2) human fibroblasts. Cells were incubated with ACL for 2h and then cultured in drug-free medium for up to 96h. Using fluorescence microscopy, agarose gel electrophoresis and comet assay we demonstrate that ACL induced time-dependent morphological and biochemical changes in both cell types. The population of apoptotic cells, analysed by acridine orange and ethidium bromide nuclear staining reached its maximum at 24-48h. Prolonged post-treatment time progressively increased the level of necrotic cells. At 24-48h time points we also observed a significant increase in caspase-3 activity, oligonucleosomal DNA fragmentation and DNA strand breaks. Cotreatment of cells with the specific caspase-3 inhibitor Ac-DEVD-CHO partly reduced the extent of apoptosis and necrosis and DNA degradation. In conclusion, trisomic and normal fibroblasts demonstrate similar response to aclarubicin treatment. Drug induced the apoptotic and necrotic pathway of cell death that was mediated by caspase-3.  相似文献   

7.
Zinc dyshomeostasis can induce cell death. However, the mechanisms involved have not been fully elucidated in prostate cancer (PCa) cells, which differ dramatically from normal cells in their zinc handling ability. Here, we studied the effects of the ionophore Zn-pyrithione (ZP) and the chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Both compounds induced cell death at micromolar concentrations when incubated with androgen-dependent (LNCaP), androgen-independent (PC3, DU145) and androgen-sensitive (C4-2) PCa cell-lines. Compared to PCa cells, RWPE1 prostate epithelial cells were less sensitive to ZP and more sensitive to TPEN, but total cellular zinc levels were changed similarly. ZnSO4 enhanced the toxicity of ZP, but inhibited the effects of TPEN as expected. The morphological/biochemical responses to ZP and TPEN differed. ZP decreased ATP levels and stimulated ERK, AKT and PKC phosphorylation. DNA laddering was observed only at low doses of ZP but all doses of TPEN. TPEN activated caspase 3/7 and induced PARP-cleavage, DNA-fragmentation, ROS-formation and apoptotic bodies. PKC and ERK-pathway inhibitors, and antioxidants protected against ZP-induced but not TPEN-induced death. Inhibitors of MPTP-opening protected both. Cell death in response to TPEN (but not ZP) was diminished by a calpain inhibitor and largely prevented by a caspase 3 inhibitor. Overall, the results indicated primarily a necrotic cell death for ZP and an apoptotic cell death for TPEN. The enhanced sensitivity of PCa cells to ZP and the apparent ability of ZP and TPEN to kill quiescent and rapidly dividing cells in a p53-independent manner suggest that ZP/TPEN might be used to develop adjunct treatments for PCa.  相似文献   

8.
Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X7 purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and lamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation. In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death.  相似文献   

9.
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (“nanoelectroporation”), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.  相似文献   

10.
Here, we present differential cytotoxic responses to two different doses of photodynamic therapies (PDTs; low-dose PDT [LDP] and high-dose PDT [HDP]) using a chlorin-based photosensitizer, DH-II-24, in human gastric and bladder cancer cells. Fluorescence-activated cell sorting analysis using Annexin V and propidium iodide (PI) showed that LDP induced apoptotic cell death, whereas HDP predominantly caused necrotic cell death. The differential cytotoxic responses to the two PDTs were further confirmed by a DiOC(6) and PI double-staining assay via confocal microscopy. LDP, but not HDP, activated caspase-3, which was inhibited by Z-VAD, Trolox, and BAPTA-AM. LDP and HDP demonstrated opposite effects on intracellular reactive oxygen species (ROS)/Ca(2+) signals; LDP stimulated intracellular ROS production, contributing to a transient increase of intracellular Ca(2+) , whereas HDP induced a massive and prolonged elevation of intracellular Ca(2+) responsible for the transient production of intracellular ROS. In addition, the two PDTs also increased in situ transglutaminase 2 (TG2) activity, with a higher stimulation by HDP, and this increase in activity was prevented by Trolox, BAPTA-AM, and TG2-siRNA. LDP-induced apoptotic cell death was strongly inhibited by Trolox and TG2-siRNA and moderately suppressed by BAPTA-AM. However, HDP-mediated necrotic cell death was partially inhibited by BAPTA-AM but not by TG2-siRNA. Thus, these results demonstrate that LDP and HDP induced apoptotic and necrotic cell death by differential signaling mechanisms involving intracellular Ca(2+) , ROS, and TG2.  相似文献   

11.
In thymocytes, peroxynitrite induces poly(ADP-ribose) synthetase (PARS) activation, which results in necrotic cell death. In the absence of PARS, however, peroxynitrite-treated thymocytes die by apoptosis. Because Bcl-2 has been reported to inhibit not only apoptotic but also some forms of necrotic cell death, here we have investigated how Bcl-2 regulates the peroxynitrite-induced apoptotic and necrotic cell death. We have found that Bcl-2 did not provide protection against peroxynitrite-induced necrotic death, as characterized by propidium iodide uptake, mitochondrial membrane potential decrease, secondary superoxide production, and cardiolipin loss. In the presence of a PARS inhibitor, peroxynitrite-treated thymocytes from Bcl-2 transgenic mice showed no caspase activation or DNA fragmentation and displayed smaller mitochondrial membrane potential decrease. These data show that Bcl-2 protects thymocytes from peroxynitrite-induced apoptosis at a step proximal to mitochondrial alterations but fails to prevent PARS-mediated necrotic cell death. Activation of tissue transglutaminase (tTG) occurs in various forms of apoptosis. Peroxynitrite did not induce transglutaminase activity in thymocytes and did not have a direct inhibitory effect on the purified tTG. Basal tTG was not different in Bcl-2 transgenic and wild type cells.  相似文献   

12.
BACKGROUND: There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the activation of a member of the caspase family, such as caspase 3, which leads to the execution of apoptosis. It has been suggested that blocking of caspase activation in an apoptotic process may divert cell death to a necrotic demise, suggesting that apoptosis and necrosis may share some upstream events. Activation of caspase is preceded by the release of mitochondrial cytochrome C. MATERIALS AND METHODS: We first studied cell death induced by beta-lapachone by MTT and colony-formation assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the PI staining procedure to determine the sub-G1 fraction and the Annexin-V staining for externalization of phophatidylserine. We next compared the release of mitochondrial cytochrome C in apoptosis and necrosis. Mitochondrial cytochrome C was determined by Western blot analysis. To investigate changes in mitochondria that resulted in cytochrome C release, the mitochondrial membrane potential (delta psi) was analyzed by the accumulation of rhodamine 123, a membrane-permeant cationic fluorescent dye. The activation of caspase in apoptosis and necrosis were measured by using a profluorescent substrate for caspase-like proteases, PhiPhiLuxG6D2. RESULTS: beta-lapachone induced cell death in a spectrum of human carcinoma cells, including nonproliferating cells. It induced apoptosis in human ovary, colon, and lung cancer cells, and necrotic cell death in four human breast cancer cell lines. Mitochondrial cytochrome C release was found in both apoptosis and necrosis. This cytochrome C release occurred shortly after beta-lapachone treatment when cells were fully viable by trypan blue exclusion and MTT assay, suggesting that cytochrome C release is an early event in beta-lapachone induced apoptosis as well as necrosis. The mitochondrial cytochrome C release induced by beta-lapachone is associated with a decrease in mitochondrial transmembrane potential (delta psi). There was activation of caspase 3 in apoptotic cell death, but not in necrotic cell death. This lack of activation of CPP 32 in human breast cancer cells is consistent with the necrotic cell death induced by beta-lapachone as determined by absence of sub-G1 fraction, externalization of phosphatidylserine. CONCLUSIONS: beta-lapachone induces either apoptotic or necrotic cell death in a variety of human carcinoma cells including ovary, colon, lung, prostate, and breast, suggesting a wide spectrum of anti-cancer activity in vitro. Both apoptotic and necrotic cell death induced by beta-lapachone are preceded by a rapid release of cytochrome C, followed by the activation of caspase 3 in apoptotic cell death but not in necrotic cell death. Our results suggest that beta-lapachone is a potential anti-cancer drug acting on the mitochondrial cytochrome C-caspase pathway, and that cytochrome C is involved in the early phase of necrosis.  相似文献   

13.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

14.
Apoptosis may play a role in osteoarthritis (OA). Apoptosis can proceed via two different pathways depending on the stimulus. However, both pathways converge upon the effector caspases, caspases-3 and -7. In some systems inhibition of caspases-3 and -7 can prevent apoptosis and may therefore have important therapeutic implications. To confirm this, apoptosis was induced in canine chondrocytes with mitomycin-c (MMC), either in the presence or absence of the general caspase inhibitor, Z-VAD FMK, or a specific caspase-3/7 inhibitor. Z-VAD FMK prevented MMC induced cell death. In contrast, inhibition of caspases-3 and -7 in the presence of MMC induced morphological changes that could be described as necrotic-like or paraptotic-like but did not prevent cell death. The addition of an inhibitor of caspase-8 or caspase-9 along with inhibitor of caspase-3/7 was required to reduce cell death. The morphological changes did not occur in the presence of the caspase-3/7 inhibitor alone and could be prevented by addition of Z-VAD FMK. These data lead to the conclusion that, if the apoptotic program cannot be completed, the cells are pushed into a necrotic or other nonapoptotic mode of death which may involve caspase-8 and/or caspase-9.  相似文献   

15.
The role of caspase proteases in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis of human promyelocytic HL-60 cells was examined. Treatment of HL-60 cells with micromolar concentrations of CCCP resulted in cell death, with typical apoptotic features such as chromatin condensation, formation of apoptotic bodies, nucleosomal fragmentation of DNA and a distinct increase in caspase-3 activity. The results, however, indicated that full caspase-3 inhibition by the selective inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone (Z-DEVD-FMK) did not prevent cell death, nor did it affect the manifestation of apoptotic hallmarks, including apoptotic bodies formation and nucleosomal DNA fragmentation. The only distinct effect that Z-DEVD-FMK exhibited was to retard the disruption of the plasma membrane. We therefore assume that caspase-3 activity itself is not essential for the manifestation of apoptotic features mentioned above. Similarly, the pan-specific caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not prevent cell death. On the contrary, Z-VAD-FMK completely prevented DNA cleavage and apoptotic body formation, but it failed to completely counteract chromatin condensation. Thus, in the presence of Z-VAD-FMK, application of CCCP concentrations that otherwise induced apoptosis, resulted in the appearance of two morphologically different groups of dead cells with intact DNA. The first group included cells with necrotic-like nuclear morphology, and therefore could be taken as being "truly" necrotic in nature, because they had intact DNA. The cells of the second group formed small single-spherical nuclei with condensed chromatin. In spite of having intact DNA, they could not be taken as "truly" necrotic cells. It is evident that in the experimental system, caspase proteases play an essential role in the formation of apoptotic bodies and in the cleavage of nucleosomal DNA, but not in the condensation of chromatin. Therefore, it is likely that the choice between cell death modalities is not solely a matter of the caspase proteases present.  相似文献   

16.
Li FC  Yen JC  Chan SH  Chang AY 《PloS one》2012,7(1):e30589

Background

Whereas sudden death, most often associated with cardiovascular collapse, occurs in abusers of the psychostimulant methamphetamine (METH), the underlying mechanism is much less understood. The demonstration that successful resuscitation of an arrested heart depends on maintained functionality of the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of stable blood pressure, suggests that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse. We tested the hypothesis that cessation of brain stem cardiovascular regulation because of a loss of functionality in RVLM mediated by bioenergetics failure and oxidative stress underlies the cardiovascular collapse elicited by lethal doses of METH.

Methodology/Principal Findings

Survival rate, cardiovascular responses and biochemical or morphological changes in RVLM induced by intravenous administration of METH in Sprague-Dawley rats were investigated. High doses of METH induced significant mortality within 20 min that paralleled concomitant the collapse of arterial pressure or heart rate and loss of functionality in RVLM. There were concurrent increases in the concentration of METH in serum and ventrolateral medulla, along with tissue anoxia, cessation of microvascular perfusion and necrotic cell death in RVLM. Furthermore, mitochondrial respiratory chain enzyme activity or electron transport capacity and ATP production in RVLM were reduced, and mitochondria-derived superoxide anion level was augmented. All those detrimental physiological and biochemical events were reversed on microinjection into RVLM of a mobile electron carrier in the mitochondrial respiratory chain, coenzyme Q10; a mitochondria-targeted antioxidant and superoxide anion scavenger, Mito-TEMPO; or an oxidative stress-induced necrotic cell death inhibitor, IM-54.

Conclusion

We conclude that sustained anoxia and cessation of local blood flow that leads to bioenergetics failure and oxidative stress because of mitochondrial dysfunction, leading to acute necrotic cell death in RVLM underpins cardiovascular collapse elicited by lethal doses of METH.  相似文献   

17.
MAPK signaling is involved in camptothecin-induced cell death   总被引:3,自引:0,他引:3  
Camptothecin, a topoisomerase I inhibitor, is a well-known anticancer drug. However, its mechanism has not been well studied in human gastric cancer cell lines. Camptothecin induced apoptotic cell death in human gastric cancer cell line AGS. Z-VAD-fmk, pan-caspase inhibitor, blocked apoptotic phenotypes induced by camptothecin suggesting that caspases are involved in camptothecin-induced cell death. An inhibitor of caspase-6 or -8 or -9 did not prevent cell death by camptothecin. Various protease inhibitors failed to prevent camptothecin-induced cell death. These results suggest that only few caspases are involved in camptothecin-induced cell death. Camptothecin induced phosphorylation of ERK1/2, JNK, and p38 MAPK, in a dose and time-dependent manner in AGS. Z-VAD-fmk did not affect MAPK signaling induced by camptothecin suggesting that caspase signaling occurs downstream of MAPK signaling. Blocking of p38 MAPK, but not ERK1/2, resulted in partial inhibition of cell death and PARP cleavage by camptothecin in AGS. Taken together, MAPK signaling is associated with apoptotic cell death by camptothecin.  相似文献   

18.
The rules that govern the engagement of antitumor immunity are not yet fully understood. Ags expressed by tumor cells are prone to induce T cell tolerance unless the innate immune system is activated. It is unclear to what extent tumors engage this second signal link by the innate immune system. Apoptotic and necrotic (tumor) cells are readily recognized and phagocytosed by the cells of the innate immune system. It is unknown how this affects the tumor's immunogenicity. Using a murine melanoma (B16m) and lymphoma (L5178Y-R) model, we studied the clonal sizes and cytokine signatures of the T cells induced by these tumors in syngeneic mice when injected as live, apoptotic, and necrotic cells. Both live tumors induced a type 2 CD4 cell response characterized by the prevalent production of IL-2, IL-4, and IL-5 over IFN-gamma. Live, apoptotic, and necrotic cells induced CD4 (but no CD8) T cells of comparable frequencies and cytokine profiles. Therefore, live tumors engaged the second signal link, and apoptotic or necrotic tumor cell death did not change the magnitude or quality of the antitumor response. A subclone of L5178Y-R, L5178Y-S cells, were found to induce a high-frequency type 1 response by CD4 and CD8 cells that conveyed immune protection. The data suggest that the immunogenicity of tumors, and their characteristics to induce type 1 or type 2, CD4 or CD8 cell immunity is not primarily governed by signals associated with apoptotic or necrotic cell death, but is an intrinsic feature of the tumor itself.  相似文献   

19.
While the apoptotic and necrotic cell death pathways have been well studied, there lacks a comprehensive understanding of the molecular events involving autophagic cell death. We examined the potential roles of the apoptosis-linked caspase-3 and the necrosis/apoptosis-linked calpain-1 after autophagy induction under prolonged amino acid (AA) starvation conditions in PC-12 cells. Autophagy induction was observed as early as three hours following amino acid withdrawal. Cell death, measured by lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays occurred within 24 h following starvation and was accompanied by an upregulation in caspase-3 activity but not calpain-1. The cell death that occurred following AA starvation was significantly alleviated by treatment with the autophagy inhibitor 3-methyl adenine but not with the broad spectrum caspase inhibitors. Thus, this study demonstrates that 3-methyladenine-sensitive autophagic cell death due to AA starvation in PC-12 cells is mechanistically and biochemically similar to, yet distinct from, classic caspase dependent apoptosis. Shankar Sadasivan and Anu Waghray have contributed equally to this work.  相似文献   

20.
The inhibitory effects of Chinonin, a natural antioxidant extracted from a Chinese medicine, on apoptotic and necrotic cell death of cardiomyocytes in hypoxia-reoxygenation process were observed in this study. The possible mechanisms of Chinonin on scavenging reactive oxygen species and regulating apoptotic related genes bcl-2 and p53 were also investigated. Neonatal rat cardiomyocytes were subjected to 24-h hypoxia and 4-h reoxygenation. Cell death was evaluated by DNA electrophoresis on agarose gel, cell death ELISA and annexin-V-FLUOS/propidium iodide (PI) double staining cytometry. Hypoxia caused the increase of apoptotic rates and the release of lactate dehydrogenase (LDH), while reoxygenation not only further increased the apoptotic rates and leakage of LDH, but also induced necrosis of cardiomyocytes. In addition, hypoxia increased the levels of NO(2)(-)/NO(3)(-) and thiobarbituric acid reacted substances (TBARS), while reoxygenation decreased NO(2)(-)/NO(3)(-), but further increased TBARS in the cultured media. Moreover, hypoxia up-regulated the expression levels of bcl-2 and p53 proteins, while reoxygenation down-regulated bcl-2 and further up-regulated p53. Chinonin significantly decreased the rates of apoptotic and necrotic cardiomyocytes, and inhibited the leakage of LDH. It also diminished NO(2)(-)/NO(3)(-) and TBARS, down-regulated the expression level of p53 protein, and up-regulated bcl-2 protein, respectively. The results suggest that Chinonin has preventive effects against apoptotic and necrotic cell death and its protective mechanisms are related to the antioxidant properties of scavenging nitric oxide and oxygen free radicals, and the modulating effects on the expression levels of bcl-2 and p53 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号