首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma cruzi G strain epimastigotes were lysed by normal human serum (NHS) through activation of the alternative complement pathway (ACP), whereas metacyclic trypomastigotes were resistant to lysis. Epimastigotes and metacyclics with equivalent amounts of C3b deposited on their surface bound factor B with similar affinities. In contrast, factor H bound with higher affinity to metacyclics than to epimastigotes. Both T. cruzi forms with bound C3b were extensively (60 to 80%) lysed after formation of surface C3-convertase and the addition of a C3-C9 complement source. In the presence of factors H and I, or incubation with NHS with EDTA, the percentage of lysis of metacyclics decreased faster than that of epimastigotes with increasing incubation times. These data suggest, as a possible mechanism of resistance to lysis in metacyclic trypomastigotes, the higher binding affinity of factor H to C3b and the inactivation of the latter by serum regulatory proteins. Metacyclics were lysed by NHS, through ACP, in the presence of human immune serum to T. cruzi or anti-T. cruzi monoclonal antibody, but not with the Fab fragment of the latter, which recognizes a 90,000 m.w. antigen from T. cruzi metacyclics. Protection of parasite-bound C3b from serum control proteins was observed when parasites were incubated, before C3 deposition, with the lytic monoclonal antibody but not with its Fab fragment or a nonrelated IgG control. When C3b was deposited on metacyclics before antibody binding, C3b inactivation occurred. In the lysis of metacyclics, through ACP activation, binding of antibody apparently creates new acceptor sites which prevent the activity of serum regulatory proteins.  相似文献   

2.
Infective and vertebrate stages of Trypanosoma cruzi are resistant to lysis by the alternative pathway of complement. To further elucidate the mechanism of complement evasion and to study how some immune sera render the infective stage sensitive to lysis, we compared the interaction of complement components C3 and C9 with the surface of complement susceptible, vector stage epimastigotes and vertebrate stage trypomastigotes of T. cruzi. Our studies showed that, upon incubation in human serum, complement resistant tissue culture trypomastigotes (TCT) bound five- to eightfold less C3 or C9 than complement sensitive epimastigotes (Epi). C3 bound to Epi is mainly in the hemolytically active C3b form, while TCT bear predominantly the hemolytically inactive iC3b fragment, which cannot participate in C5 convertase formation or lead to deposition of the lytic C5b-9 complex. Three- to sixfold more C3 and two- to threefold more C9 were deposited on TCT when lytic rabbit immune IgG with broad specificity was used to sensitize the parasites, and nearly one-half of bound C3 was present as C3b. In contrast, a comparison of three different sources of IgG from immune human serum showed a less clear correlation between the titer or specificity of anti-T. cruzi antibody, enhancement of C3 or C9 deposition, change in the form of bound C3, or killing. These results show that lytic rabbit IgG for T. cruzi changes the form and amount of bound complement components in anticipated fashion, but that human immune IgG does not give predictable changes in the extent or form of C3 or C9 deposition.  相似文献   

3.
Evasion of the complement system by microorganisms is an essential event in the establishment of infection. In the case of Trypanosoma cruzi, the causative agent of Chagas disease, resistance to complement-mediated lysis is a developmentally regulated characteristic. Infectious trypomastigotes are resistant to complement-mediated lysis in the absence of immune antibodies, whereas the insect forms (epimastigotes) are sensitive to lysis via the alternative complement pathway. We have purified a developmentally regulated, trypomastigote glycoprotein, gp160, and shown that it has complement regulatory activity. The T. cruzi gp160 restricts complement activation by binding the complement component C3b and inhibiting C3 convertase formation. The protein is anchored in the parasite membrane via a glycosyl phosphatidylinositol linkage, similar to the human complement regulatory protein, decay-accelerating factor. Using anti-gp160 antibodies we have isolated a bacteriophage lgt11 clone expressing a portion of the gp160 gene that shares significant DNA sequence homology with the human DAF gene. These results provide functional, biochemical, and genetic evidence that the T. cruzi gp160 is a member of the C3/C4 binding family of complement regulatory proteins, and that gp160 may provide the infectious trypomastigotes with a means of evading the destructive effects of complement.  相似文献   

4.
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag.  相似文献   

5.
Infective- and vertebrate-stage trypomastigotes of Trypanosoma cruzi resist serum killing by the alternative complement pathway, whereas noninfective vector-stage epimastigotes, from which trypomastigotes derive, are serum-sensitive. This form of developmental preadaption is commonly observed in protozoan parasites, but its mechanisms are poorly understood. We have demonstrated previously that trypomastigotes spontaneously shed molecules which interfere with formation and accelerate the intrinsic decay of complement C3 convertases, a finding which may explain the evasion of complement lysis by trypomastigotes. We now describe the partial purification and characterization of the T. cruzi C3 convertase inhibitor from the supernatant of culture metacyclic and tissue culture trypomastigotes. Decay-accelerating activity for both classical and alternative pathway C3 convertases copurifies on anion-exchange fast protein liquid chromatography and chromatofocusing with 35S-labeled molecules of 87-93 kDa, pI 5.6-5.8. The labeled components are destroyed by papain and retained on concanavalin A-Sepharose, procedures which remove functional decay-accelerating activity from the supernatant. The 87-93-kDa components are immunoprecipitated by sera from patients chronically infected with T. cruzi, but not by antisera to any known regulatory proteins of the human complement cascade. Lytic activity for tissue culture trypomastigotes in chagasic sera is associated with antibody reactivity against the 87-93-kDa 35S-labeled components and with inhibition of decay-accelerating activity. The T. cruzi factor is the first developmentally regulated microbial complement inhibitor to be biochemically characterized.  相似文献   

6.
Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU) medium at 37 degrees C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a) T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b) the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.  相似文献   

7.
The molecular details that govern the specific interactions between acyl carrier protein (ACP) and the enzymes of fatty acid biosynthesis are unknown. We investigated the mechanism of ACP-protein interactions using a computational analysis to dock the NMR structure of ACP with the crystal structure of beta-ketoacyl-ACP synthase III (FabH) and experimentally tested the model by the biochemical analysis of FabH mutants. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The ACP interaction surface was defined by mutations that compromised FabH activity in the ACP-dependent assay but had no effect in the ACP-independent assay. ACP docked to a positively charged/hydrophobic patch adjacent to the active site tunnel on FabH, which included a conserved arginine (Arg-249) that was required for ACP docking. Kinetic analysis and direct binding studies between FabH and ACP confirmed the identification of Arg-249 as critical for FabH-ACP interaction. Our experiments reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of the fatty acid biosynthesis enzymes and the high degree of sequence conservation in helix II of ACP across species.  相似文献   

8.
The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1) which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2) the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3) whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.  相似文献   

9.
Species-restricted lysis of complement refers to the relative inefficiency of complement to lyse cells from the homologous species. Restriction occurs at least at the steps involving C3/C5 convertase formation and the C9 insertion phase of the complement cascade, and is presumed to be mediated by inhibitory factors in the target cell membrane. In this study, we have examined whether decay accelerating factor (DAF), a membrane protein known to modulate C3/C5 convertase activities on cell surfaces, acts as a regulatory protein in species-restricted lysis of human erythrocyte (E). The role of DAF was assessed in homologous lysis by the classic pathway, in reactive lysis, and in lytic steps requiring C8 and C9. The results indicated that DAF participated in regulating C3/C5 deposition on the surface of homologous E, but had no effect on homologous restriction in reactive lysis and in the reaction of C8 and C9 with antibody-sensitized E C1-7. Treatment of E with pronase or with dithiothreitol (DTT) abolished the restricting effect of homologous C8/C9, indicating that species-restricted lysis by C5b-9 involves membrane factor(s) sensitive to pronase and DTT.  相似文献   

10.
ABSTRACT An in vitro method has been established to obtain metacyclic form populations of Trypanosoma brucei brucei . Trypanosome populations containing more than 98% of metacyclic forms were obtained from cultures which were: 1) initiated with bloodstream forms in primary cultures in the presence of Microtus montanus embryonic fibroblast-like cells (feeder cell layers); 2) maintained in glucose-free Eagle's minimum essential medium supplemented with 10 mM L-proline, 2 mM L-glutamine and 20% (v/v) fetal bovine serum at 27° C without medium change for five days; 3) subcultured in the absence of the feeder cell layers but in the presence of Cytodex 3 beads; 4) maintained for an additional nine days with medium changes on days 5, 8 and 11; and 5) harvested on day 14 by means of diethylaminoethyl cellulose column chromatography prior to the appearance of other infective forms. Most of the trypanosomes obtained under these conditions were morphologically similar to metacyclic forms derived from tsetse fly vectors, coated with variable surface glycoprotein and were infective for mice. In the primary cultures procyclic forms, epimastigotes and metacyclic forms appeared by day 8. When the duration of the subculture was prolonged to 17 days or more at 27° C, the metacyclic forms decreased in number while short trypomastigotes, long slender epimastigotes, and long slender trypomastigotes increased in number. These forms in such long-term cultures also appeared in diethylaminoethyl cellulose-isolated populations along with metacyclic forms.  相似文献   

11.
An in vitro method has been established to obtain metacyclic form populations of Trypanosoma brucei brucei. Trypanosome populations containing more than 98% of metacyclic forms were obtained from cultures which were: 1) initiated with bloodstream forms in primary cultures in the presence of Microtus montanus embryonic fibroblast-like cells (feeder cell layers); 2) maintained in glucose-free Eagle's minimum essential medium supplemented with 10 mM L-proline, 2 mM L-glutamine and 20% (v/v) fetal bovine serum at 27 degrees C without medium change for five days; 3) subcultured in the absence of the feeder cell layers but in the presence of Cytodex 3 beads; 4) maintained for an additional nine days with medium changes on days 5, 8 and 11; and 5) harvested on day 14 by means of diethylaminoethyl cellulose column chromatography prior to the appearance of other infective forms. Most of the trypanosomes obtained under these conditions were morphologically similar to metacyclic forms derived from tsetse fly vectors, coated with variable surface glycoprotein and were infective for mice. In the primary cultures procyclic forms, epimastigotes and metacyclic forms appeared by day 8. When the duration of the subculture was prolonged to 17 days or more at 27 degrees C, the metacyclic forms decreased in number while short trypomastigotes, long slender epimastigotes, and long slender trypomastigotes increased in number. These forms in such long-term cultures also appeared in diethylaminoethyl cellulose-isolated populations along with metacyclic forms.  相似文献   

12.
The interaction of two Burkitt lymphoma lines, Raji and Rael, with human C and NK cells was analyzed. Raji cells activate the alternative C pathway (ACP) and then bind C3 fragments. Consequently, the cells become more sensitive to lysis by CR3-bearing NK cells but not to C lysis. In contrast, Rael cells are poor ACP activators, do not bind C3 fragments, and are therefore resistant to C-dependent NK lysis. As suggested earlier, the difference between Raji and Rael could be attributed to the presence or absence of CR2, respectively, on their surface. To potentiate C- and NK-dependent lysis of target cells, we generated heteroconjugates composed of a murine antitransferrin receptor mAb and of human C C3b or iC3b. Antibody-C3b conjugates induced C3 deposition on Rael cells and elevated C3 deposition on Raji cells in human serum. Both Raji and Rael cells coated with antibody-C3b conjugates were efficiently lyzed by the cytolytic ACP in human serum. This conjugate had a small enhancing effect on target cell lysis by NK cells which could be markedly increased by combined treatment of the target cell with antibody-C3b conjugate and C5-depleted human serum. On the other hand, antibody-iC3b conjugates efficiently potentiated lysis of target cells by NK cells in the absence of serum. The iC3b-directed cytotoxicity was mediated by CR3-bearing NK effector cells. Anti-C3 but not anti-mouse Ig antibodies abrogated the activity of the antibody-iC3b conjugate. These results further demonstrate that NK cytotoxicity may be potentiated by opsonizing the target cells with C3 fragments and suggest that antibody-C3b/iC3b conjugates could be potent tools for targeting and potentiation of the lytic action of both C and NK cells against tumor cells.  相似文献   

13.
The amastigogenesis primary of T. cruzi occurs naturally when metacyclic trypomastigotes transform into amastigotes within the cells of the mammalian host. The in vitro study of the macromolecular changes that occur over several days during the transformation process should provide significant indications of how the parasite adapts to the mammalian host environment. We show here that metacyclic trypomastigotes pre-incubated at 37 degrees C in a protein-rich medium reach a high degree of transformation to amastigotes when re-incubated in the fresh medium. Giemsa-stained smears show that during the pre-incubation phase, the metacyclic trypomastigotes undergo lengthening at the posterior end and a thinning out of the entire body. SDS-PAGE analysis of polypeptides and glycopeptides or Western blot with stage-specific antisera analyses indicate that the in vitro primary amastigogenesis is associated with abrupt changes in protein, glycoprotein, and stage-specific antigens that occur simultaneously during the first 24 hours of pre-incubation. Since the differentiating system consists of a rich media at 37 degrees C, temperature and medium constitution must trigger a macromolecular differentiation to amastigotes that precedes the morphological transformation by several days. This transformation is associated with the rearrangement of stage-specific antigens and takes place when the culture medium is changed.  相似文献   

14.
Trypanosoma cruzi trypomastigotes, but not epimastigotes, are normally resistant to the lytic effects of complement from vertebrate hosts susceptible to infection. This resistance facilitates parasite survival and infectivity. During the course of chronic infections, however, the vertebrate hosts produce antibodies that render the trypomastigotes sensitive to lysis, primarily via the alternative complement cascade and amplified by the classical pathway. Here, Greice Krautz, Jessica Kissinger and Antoniana Krettli summarize research on lytic antibodies, and on their respective target(s) on the T. cruzi surface. These targets are useful in tests aimed at the diagnosis of chronic Chagas disease for control of cure after specific treatment and for vaccine development.  相似文献   

15.
Alternative complement pathway C3 convertase formation involves the cleavage of C3b-associated factor B into fragments Ba and Bb. Whereas Bb, in complex with C3b, has proteolytic specificity toward native C3, the function of the Ba moiety in the formation and/or decay of alternative complement pathway C3 convertase is uncertain. Therefore, we have examined the effect of purified Ba fragment on both fluid-phase and surface-bound enzymatic activity and showed that whereas Ba could inhibit the rate of C3 convertase formation, the rate of intrinsic decay remained unaffected. A specific, metal ion-independent interaction between Ba and C3b was subsequently demonstrated by use of the cross-linking reagent dithiobis(succinimidyl propionate). When cell-associated 125I-B was activated by D, the dissociation of Bb fragment displayed simple first-order kinetics with a half-time of 2.4 min, this value being in reasonable agreement with the hemolytically determined decay rate of 1.8 min. In contrast, most of the Ba fragment undergoes rapid dissociation, but there is also evidence to suggest the establishment of a new equilibrium due to the ability of Ba to rebind to C3b. Cumulatively, these data are consistent with a model in which the attachment of intact B to C3b is mediated by two points of contact, one being in the Ba domain and the other in the Bb domain. Due to avidity effects, each of these interactions could be of relatively low intrinsic affinity, and the characteristic unidirectionality of alternative complement pathway C3 convertase decay may simply result from the low intrinsic association of "univalent" Bb for the C3b subunit.  相似文献   

16.
Mammalian cells in culture express membrane receptors for C3b when infected with HSV-1. C3b binding is mediated by glycoprotein C (gC), a virus-specified membrane glycoprotein. In view of the inhibitory functions of other C3b-binding proteins, we studied the capacity of gC to modulate complement activation. Glycoprotein C was purified from HSV-1-infected cells by immunoaffinity chromatography. Glycoprotein C, but not a control viral glycoprotein, demonstrated dose-dependent acceleration of decay of C3bBb sites. In addition, gC produced a dose-dependent, time-independent depression of the overall hemolytic efficiency of C3bBb sites. Inhibition of C5b6-initiated reactive lysis of cells bearing C3b, but not cells bearing antibody alone, by gC suggests that the second effect represents interference with the C3b-C5/5b interaction. This hypothesis is supported by the failure of gC to inhibit reactive lysis when added after C5b67 insertion into target cells. Glycoprotein C does not accelerate C14b2a decay, nor does it impair classical pathway hemolytic efficiency when excess C5 is present. By limiting available C5/5b, some gC inhibition of C3b-C5/5b interactions can be unmasked in the classical pathway system. Glycoprotein C is devoid of factor I co-factor activity. HSV-1 gC is a modulator of complement activation, especially via the alternative pathway, and may represent a novel viral mechanism for evading host defense processes.  相似文献   

17.
Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid synthesis. In yeast and mammals, ACP exists as a separate domain within a large multifunctional fatty acid synthase polyprotein (type I FAS), whereas it is a small monomeric protein in bacteria and plastids (type II FAS). Bacterial ACPs are also acyl donors for synthesis of a variety of products, including endotoxin and acylated homoserine lactones involved in quorum sensing; the distinct and essential nature of these processes in growth and pathogenesis make ACP-dependent enzymes attractive antimicrobial drug targets. Additionally, ACP homologues are key components in the production of secondary metabolites such as polyketides and nonribosomal peptides. Many ACPs exhibit characteristic structural features of natively unfolded proteins in vitro, with a dynamic and flexible conformation dominated by 3 parallel alpha helices that enclose the thioester-linked acyl group attached to a phosphopantetheine prosthetic group. ACP conformation may also be influenced by divalent cations and interaction with partner enzymes through its "recognition" helix II, properties that are key to its ability to alternately sequester acyl groups and deliver them to the active sites of ACP-dependent enzymes. This review highlights recent progress in defining how the structural features of ACP are related to its multiple carrier roles in fatty acid metabolism.  相似文献   

18.
The high resistance of Trypanosoma cruzi trypomastigotes, the causal agent of Chagas' disease, to complement involves several parasite strategies. In these in vitro studies, we show that T. cruzi calreticulin (TcCRT) and two subfragments thereof (TcCRT S and TcCRT R domains) bind specifically to recognition subcomponents of the classical and lectin activation pathways (i.e., to collagenous tails of C1q and to mannan-binding lectin) of the human complement system. As a consequence of this binding, specific functional inhibition of the classical pathway and impaired mannan-binding lectin to mannose were observed. By flow cytometry, TcCRT was detected on the surface of viable trypomastigotes and, by confocal microscopy, colocalization of human C1q with surface TcCRT of infective trypomastigotes was visualized. Taken together, these findings imply that TcCRT may be a critical factor contributing to the ability of trypomastigotes to interfere at the earliest stages of complement activation.  相似文献   

19.
Amastigogenesis occurs first when metacyclic trypomastigotes from triatomine urine differentiate into amastigotes inside mammalian host cells and a secondary process when tissue-derived trypomastigotes invade new cells and differentiate newly to amastigotes. Using scanning electron microscopy, we compared the morphological patterns manifested by trypomastigotes and metacyclic forms of Trypanosoma cruzi during their axenic-transformation to amastigotes in acidic medium at 37 C. We show here that in culture MEMTAU medium, secondary and primary axenic amastigogenesis display different morphologies. As already described, we also observed a high differentiation rate of trypomastigotes into amastigotes. Conversely, the transformation rate of in vitro-induced-metacyclic trypomastigotes to amastigotes was significantly slower and displayed distinct patterns of transformation that seem environment-dependent. Morphological comparisons of extracelullar and intracellular amastigotes showed marked similarities, albeit some differences were also detected. SDS-PAGE analyses of protein and glycoprotein from primary and axenic extracelullar amastigotes showed similarities in glycopeptide profiles, but variations between their proteins demonstrated differences in their respective macromolecular constitutions. The data indicate that primary and axenic secondary amastigogenesis of T. cruzi may be the result of different developmental processes and suggest that the respective intracellular mechanisms driving amastigogenesis may not be the same.  相似文献   

20.
Binding of the complement components C3 and C5 to epimastigote and trypomastigote stages of the Brazil strain of Trypanosoma cruzi was examined using radioligand binding and flow cytometric assays. Fibroblast-derived trypomastigotes bound approximately 40% fewer molecules of [125I]C3 per parasite than did epimastigotes. The predominant molecular species of C3 deposited on fibroblast-derived trypomastigotes was the inactive form iC3b. Addition of parasite-specific antisera failed to enhance the number of molecules of [125I]C3 per parasite or the proportion of active to inactive C3b. Flow cytometric studies revealed that only 50% of trypomastigotes (fibroblast-derived or blood-form) bound C3. In contrast to results of the [125I]C3 binding studies, flow cytometric analysis showed that the percentage of trypomastigotes binding C3 actually increased upon incubation with parasite-specific antisera. C5 was found also to bind to only a percentage of trypomastigotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号