首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-phase dynamic model is developed that describes heat and mass transfer in intermittently-mixed solid-state fermentation bioreactors. The model predicts that in the regions of the bed near the air inlet there can be significant differences in the air and solid temperatures, while in the remainder of the bed the gas and solid phases are much closer to equilibrium, although there can be differences in water activity of around 0.05. The increase in the temperature of the gas as it flows through the bed means that it is impossible to prevent the bed from drying out, even if saturated air is used at the air inlet. The substrate can dry to water activities that severely limit growth, unless the bed is intermittently mixed, with the addition of water to bring the water activity back to the desired value. Under the conditions assumed for the simulation, which was designed to mimic the growth of Aspergillus niger on corn, two mixing events were necessary, one at 17.4 and the other at 27.9 h. Even though such a strategy can minimize the restriction of growth by water-limitation, temperature-limitation remains a problem due to the rapid heating dynamics. The model is obviously a useful tool that can be used to guide scale-up and to test control strategies. Such a model, describing the non-equilibrium situation between the gas and solid phases, has not previously been proposed for solid-state fermentation bioreactors. Models in the literature that assume gas-solid temperature and moisture equilibrium cannot describe the large temperature differences between the gas and solid phase which occur within the bed near the air inlet.  相似文献   

2.
Successful scaling up of Solid Substrate Cultivation (SSC) bioreactors has been hampered by the lack of reliable models that describe such processes satisfactorily. Even though experimental data may be available for model development, data analysis is hindered by system heterogeneity and noisy measurements. This work presents a data processing procedure for periodically agitated SSC fixed bed reactors. The procedure considers several steps. First, all measurements were pre-processed on-line during the cultivation using a low pass fourth order Butterworth digital filter. Then, using this pre-processed data, the average bed temperature, evaporation rate, removed heat, and CO2 production rate were computed off-line. The variables used to compute the evaporation rate and the removed heat were smoothed off-line with a peak shaving algorithm and a non-delay inducing forward/backward moving average scheme. Variables associated with biomass growth (CO2 and metabolic heat) are known to evolve slowly. Hence, these were reprocessed with a smoothing procedure in order to diminish the effects of bioreactor heterogeneity. Here, moving average smoothing was applied using a larger window than for other variables, and determined empirically in order to smooth the pre-processed data and extract its real trend. The whole procedure was assessed with data from a 200 kg capacity SSC bioreactor in the cultivation of a filamentous fungus (Gibberella fujikuroi) on wheat bran.  相似文献   

3.
The design of a modular bioreactor for solid state fermentation is a promising development because it keeps the homogeneity of the bed at optimal levels. This study determines the optimum geometry of elementary modules of hexahedral bioreactors subjected to constant volume. The bioreactors have a square section and do not need an external cooling system, because the optimization limits the temperature of the bed to 35°C. The geometric optimization followed the Constructal principle of minimum heat resistance. The numerical simulations take into account the following parameters: inlet air temperature and velocity, and module volume. Once the elementary module has been selected, the total volume of the bioreactor can be calculated.  相似文献   

4.
Zymotis bioreactors for solid-state fermentation (SSF) are packed-bed bioreactors with internal cooling plates. This design has potential to overcome the problem of heat removal, which is one of the main challenges in SSF. In ordinary packed-bed bioreactors, which lack internal plates, large axial temperature gradients arise, leading to poor microbial growth in the end of the bed near the air outlet. The Zymotis design is suitable for SSF processes in which the substrate bed must be maintained static, but little is known about how to design and operate Zymotis bioreactors. We use a two-dimensional heat transfer model, describing the growth of Aspergillus niger on a starchy substrate, to provide guidelines for the optimum design and operation of Zymotis bioreactors. As for ordinary packed-beds, the superficial velocity of the process air is a key variable. However, the Zymotis design introduces other important variables, namely, the spacing between the internal cooling plates and the temperature of the cooling water. High productivities can be achieved at large scale, but only if small spacings between the cooling plates are used, and if the cooling water temperature is varied during the fermentation in response to bed temperatures.  相似文献   

5.
The mixing and heat transfer phenomena within rotating drum bioreactors (RDBs) used for solid-state fermentation processes are poorly studied. The potential for the establishment of axial temperature gradients within the substrate bed was explored using a heat transfer model. For growth of Aspergillus oryzae on wheat bran within a 24 L RDB with air at a superficial velocity of 0.0023 m s(-1) and 15% relative humidity, the model predicts an axial gradient between the air inlet and outlet of 2 degrees C during rapid growth, compared to experimental axial temperature gradients of between 1 and 4 degrees C. Undesirably high temperatures occur throughout the bed under these operating conditions, but the model predicts that good temperature control can be achieved using humid air (90% relative humidity) at superficial velocities of 1 m s(-1) for a 204 L RDB. For a 2200 L RDB, good temperature control is predicted with superficial velocities as low as 0.4 m s(-1) with the airflow being switched from 90% to 15% relative humidity whenever the temperature at the outlet end of the drum exceeds the optimal temperature for growth. This work suggests that significant axial temperature gradients can arise in those RDBs that lack provision for axial mixing. It is therefore advisable to use angled lifters within RDBs to promote axial mixing.  相似文献   

6.
A two-dimensional heat transfer model was validated against two experimental studies from the literature which describe the growth of Aspergillus niger during solid-state fermentation in packed bed bioreactors. With the same set of model parameters, the two-dimensional model was able to describe both radial temperature gradients, which dominated in one of the studies, and axial temperature gradients, which dominated in the other study. The sensitivity of the model predictions to the characteristics of the substrate and the microbe were explored. The temperatures reached in the column are most sensitive to parameters which affect the peak heat load, including the substrate packing density, the maximum specific growth rate, and the maximum biomass concentration. Even though the bed is assumed to be aerated with saturated air, the increase in temperature with bed height increases the water-carrying capacity of the air and therefore enables evaporation to contribute significantly to cooling. The model suggests that evaporation can remove as much as 78% of the heat from the bed during times of peak heat generation. Our model provides a tool which can guide the design and operation of packed bed bioreactors. However, further improvements are necessary to do this effectively, the most important of which is the incorporation of a water balance.  相似文献   

7.
The aim of this study was to study the convective drying of the hydroalcoholic extracts obtained from powdered guarana seeds in a spouted bed dryer. The influence of process variables, such as the convective airflow rate, extract feed rate, and air inlet temperature, on the quality of the dry extract was determined using the caffeine and moisture content for the process evaluation. The caffeine content in the alcoholic and dried extracts was determined by capillary gas chromatography. The experiments were performed following a 33 factorial design and the data analyzed by response surface. The analysis of dry extract showed that the air and extract feed rates did not significantly affect (25% level) the caffeine content, but that drying temperature is a major factor to consider when the extract is submitted to fluid bed drying. Caffeine losses were significant (1% level) for drying temperatures above 120°C, while moisture content was lower than 3% for temperatures above 120°C. The data showed that there is an optimum temperature for the drying of guarana extracts in spouted beds, and under the conditions used in this study it was 120°C.  相似文献   

8.
The development of large-scale solid-state fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation.  相似文献   

9.
Recent studies have shown the importance of monitoring microenvironmental conditions (temperature, relative humidity) experienced by the tablet bed during a pan coating process, thereby necessitating the need to understand how various process parameters influence these microenvironmental conditions. The process parameters studied in this work include exhaust air temperature, spray rate, inlet airflow rate, gun-to-bed distance, coating suspension percent solids, and atomization and pattern air pressure. Each of these process parameters was found to have an impact on the tablet bed relative humidity (RH), as measured using PyroButton data logging devices. A higher tablet bed RH was obtained with an increase in spray rate and atomization air pressure and with a decrease in exhaust air temperature, inlet airflow rate, gun-to-bed distance, suspension percent solids, and pattern air pressure. Based on this work, it can be concluded that the tablet bed thermodynamic conditions are a cumulative effect of the various process conditions. A strong correlation between the tablet bed RH and the frequency of tablet coating defect (logo bridging) was established, with increasing RH resulting in a higher percent of logo bridging events.  相似文献   

10.
Effect of operating conditions on solid substrate fermentation   总被引:3,自引:0,他引:3  
In this work the effects of environmental parameters on the performance of solid substrate fermentation (SSF) for protein production are studied. These parameters are (i) air flow rate, (ii) inlet air relative humidity, (iii) inlet air temperature, and (iv) the heat transfer coefficient between the outer wall of the fermentor and the air in the incubator. The air flow is supplied to effect cooling of the fermented mass by evaporation of water. A dynamic model is developed, which permits estimation of biomass content, total dry matter, moisture content, and temperature of the fermented matter. The model includes the effects of temperature and moisture content on both the maximum specific growth rate and the maximum attainable biomass content. The results of the simulation are compared with actual experimental data and show good agreement with them. The most important conclusions are that (i) the evaporative cooling of the biomass is very effective for temperature control and (ii) the air flow rate and the heat transfer coefficient have strong effects but they affect the biomass morphology and are not controllable easily. Also, a simple technique for the determination of the optimum temperature and moisture content profile for cell protein production is applied. The simulated biomass production increases considerably employing the optimum temperature and moisture content profiles. The ultimate goal is to implement the determined effects of the environmental parameters on the SSF biomass production and the temperature and moisture variation profiles to effectively control the SSF and optimize the biomass production. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes.  相似文献   

12.
用土柱试验,研究了栽培樱桃番茄(Lycopersicon esculentum var.cerasiforme Alef.)的塿土和黄绵土水分运移和温度变化规律,水分运移模型选用土壤中水分分布的动力学模型,土壤温度、空气温湿度变化选用正弦曲线模型。结果表明:塿土在各个不同深度的平均含水量均高于黄绵土,塿土的入渗速率高于黄绵土,同一深度塿土温度高于黄绵土,土壤温度随着深度的增加具有明显的滞后性;黄绵土中樱桃番茄的水分利用效率大于塿土,空气温湿度、土壤温度和土壤含水量相互影响。水分运移模型在土壤浅层处可以得到很好的拟合效果,在拟合方程的变量范围内,根据时间可以较准确的确定樱桃番茄盛果期土壤浅层含水量,对于进一步提高农业干旱防御能力、有效制定节水灌溉计划、提高水分利用效率提供了理论依据。  相似文献   

13.
This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O2 and CO2 gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O2 enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO2 enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO2 and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10–20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two bioreactors operating separately (controls). These results show an advantage of the symbiotic bioreactors association towards a cost-effective microalgal biodiesel production.  相似文献   

14.
A dynamic two-dimensional mathematical model was developed to simulate the heat transfer in solid state fermentation of rice bran inoculated with Aspergillus niger. Two bioreactors of 47 mm diameter and 300 mm height were used. Forced aeration conditions were simulated and saturated air with 60 ml/g h flow at 30°C and a bed porosity equal to 0.3 were determined as being the optimum operating conditions for the used packed-bed bioreactor. © Rapid Science Ltd. 1998  相似文献   

15.
Packed bed cultivation systems have potential for widespread application in solid-state cultivation (SSC), but they are poorly characterized. The effects of particle size and substrate loading on the growth of Rhizopus oligosporus on sago-beads in packed bed bioreactors were investigated. Pressure drop and protein were monitored as indicators of fungal growth in cultivations performed in a large column (4.9 cm internal diameter and 60 cm height) and a system of small columns (4.2 cm internal diameter and 5.2 cm height). The differential pressure drop increased to a maximum between 34 and 44 h and then decreased again. The maximum differential pressure drop attained was greatest for the smallest particle size and for the lower substrate loadings. However, since the protein content continued to increase throughout the cultivation, pressure drop could not be used to monitor growth directly.  相似文献   

16.
This study assesses the fluidized bed granulation process for the optimization of a model formulation using in-line near-infrared (NIR) spectroscopy for moisture determination. The granulation process was analyzed using an automated granulator and optimization of the verapamil hydrochloride formulation was performed using a mixture design. The NIR setup with a fixed wavelength detector was applied for moisture measurement. Information from other process measurements, temperature difference between process inlet air and granules (Tdiff), and water content of process air (AH), was also analyzed. The application of in-line NIR provided information related to the amount of water throughout the whole granulation process. This information combined with trend charts of Tdiff and AH enabled the analysis of the different process phases. By this means, we can obtain in-line documentation from all the steps of the processing. The choice of the excipient affected the nature of the solid-water interactions; this resulted in varying process times. NIR moisture measurement combined with temperature and humidity measurements provides a tool for the control of water during fluid bed granulation.  相似文献   

17.
Suspension cells of Taxus chinensis were cultivated in both shake flasks and bioreactors. The production of taxuyunnanine C (TC) was greatly reduced when the cell cultures were transferred from shake flasks to bioreactors. Oxygen supply, shear stress and stripping-off of gaseous metabolites were considered as potential factors affecting the taxane accumulation in bioreactors. The effects of oxygen supply on the cell growth and metabolism were investigated in a stirred tank bioreactor by altering its oxygen transfer rate (OTR). It was found that both the pattern and amount of TC accumulation were not much changed within the range of OTR as investigated. Comparative studies on the cell cultivation in low shear and high shear generating bioreactors suggest that the decrease of TC formation in bioreactors was not due to the different shear environments in different cultivation vessels. An incorporation of 2% CO(2) in the inlet air was beneficial for the cell growth, but did not improve the TC production in bioreactors. Furthermore, the effects of different levels of ethylene addition into the inlet air on the cell growth and TC production were investigated in a bubble column reactor. The average cell growth rate increased from 0.146 to 0.204 d(-1) as the ethylene concentration was raised from 0 to 50 ppm, and both the content and production of TC were also greatly improved by ethylene addition. At an ethylene concentration of 18 ppm, the highest TC content and volumetric production in the reactor reached 13.28 mg/(g DW) and 163.7 mg/L, respectively, which were almost the same as those in shake flasks. Compared with the control reactor (bubble column without ethylene supplementation), the maximum TC content was increased by 82% and the total production of TC was doubled. The results indicate that ethylene is a key factor in scaling up the process of the suspension cultures of T. chinensis from a shake flask to a bioreactor.  相似文献   

18.
Ethyl acetate removal from an air stream was carried out by using a flat composite membrane bioreactor. The composite membrane consisted of a dense polydimethylsiloxane top layer with an average thickness of 0.3 μm supported in a porous polyacrylonitrile layer (50 μm). The membrane bioreactor (MBR) was operated during 3 months, and a maximum elimination capacity of 225 g m−3 h−1 at an empty bed residence time of 60 s was observed. Removal efficiencies higher than 95% were obtained for inlet loads lower than 200 g m−3 h−1 and empty bed residence times as short as 15 s. The estimated yield coefficient, determined from the carbon dioxide production, resulted in 0.82 g dry biomass synthesized per gram of ethyl acetate degraded. No data of ethyl acetate treatment in MBR have been found in the literature, but the results illustrate that membrane bioreactors can potentially be a good option for its treatment.  相似文献   

19.
Top-spray fluidized bed granulation with axial fluidization airflow from the bottom of the granulator is well-established in the pharmaceutical industry. The application of swirling airflow for fluidized bed granulation was more recently introduced. This study examined the effects of various process parameters on the granules produced by side-spray fluidized bed with swirling airflow using the central composite and Box–Behnken design of experiment. Influence of the amount of binder solution, spray rate, and distance between spray nozzle and powder bed were initially studied to establish operationally viable values for these parameters. This was followed by an in-depth investigation on the effects of inlet airflow rate, atomizing air pressure and distance between spray nozzle and powder bed on granule properties. It was found that the amount of binder solution had a positive correlation with granule size and percentage of lumps but a negative correlation with size distribution and Hausner ratio of the granules. Binder solution spray rate was also found to affect the granules size. High drug content uniformity was observed in all the batches of granules produced. Both inlet airflow rate and atomizing air pressure were found to correlate negatively with granule size and percentage of lumps but correlate positively with the size distribution of the granule produced. Percentage of fines was found to be significantly affected by inlet airflow rate. Distance between spray nozzle and powder bed generally affected the percentage of lumps.  相似文献   

20.
A potential method to improve biomass distribution and the stability of vapor-phase bioreactors is to operate them in a directionally switching mode such that the contaminant air stream direction is periodically reversed through the reactor. In this study, the effect of switching frequency (SF) on bioreactor performance and biodegradation activity was investigated at 1-, 3- and 7-day SFs using toluene as a model compound. Rapid losses of biodegradation capacity and serious bioreactor instability were observed in the bioreactor operated at a 1-day SF. It is hypothesized that the frequent dynamic loading conditions at the 1-day SF hindered biofilm development and ultimately bioreactor stability. In contrast, bioreactors operated at the 3- and 7-day SFs achieved overall removal efficiencies of greater than 99% for 72 and 59 days of operation, respectively. Following each air-stream reversal, the bioreactor operated at the 7-day SF required 48 h to fully restore biodegradation capacity in the inlet bioreactor section. The 1-day SF bioreactor required no such reacclimation period. The toluene-degrading activity in the inlet section of the 7-day SF bioreactor dropped by 71% during the 7-day cycle, whereas it decreased by only 11% in the inlet of the 3-day SF bioreactor. These declines suggest that continuous or near-continuous exposure to toluene can inhibit microbial activity. Of the three SFs examined, the 3-day SF yielded the most efficient bioreactor performance by balancing reacclimation requirements with biodegradation activity losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号