首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of bovine pancreatic ribonuclease A (RNase A) in complex with 3',5'-ADP, 2',5'-ADP, 5'-ADP, U-2'-p and U-3'-p have been determined at high resolution. The structures reveal that each inhibitor binds differently in the RNase A active site by anchoring a phosphate group in subsite P1. The most potent inhibitor of all five, 5'-ADP (Ki = 1.2 microM), adopts a syn conformation (in contrast to 3',5'-ADP and 2',5'-ADP, which adopt an anti), and it is the beta- rather than the alpha-phosphate group that binds to P1. 3',5'-ADP binds with the 5'-phosphate group in P1 and the adenosine in the B2 pocket. Two different binding modes are observed in the two RNase A molecules of the asymmetric unit for 2',5'-ADP. This inhibitor binds with either the 3' or the 5' phosphate groups in subsite P1, and in each case, the adenosine binds in two different positions within the B2 subsite. The two uridilyl inhibitors bind similarly with the uridine moiety in the B1 subsite but the placement of a different phosphate group in P1 (2' versus 3') has significant implications on their potency against RNase A. Comparative structural analysis of the RNase A, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and human angiogenin (Ang) complexes with these and other phosphonucleotide inhibitors provides a wealth of information for structure-based design of inhibitors specific for each RNase. These inhibitors could be developed to therapeutic agents that could control the biological activities of EDN, ECP, and ANG, which play key roles in human pathologies.  相似文献   

2.
Steric and chemical evidence had previously shown that residues Lys-7 and/or Arg-10 of bovine pancreatic RNAase A could belong to the p2 phosphate-binding subsite, adjacent to the 3' side of the main site p1. In the present work chemical modification of the enzyme with pyridoxal 5'-phosphate and cyclohexane-1,2-dione was carried out in order to identify these residues positively as part of the p2 site. The reaction with pyridoxal 5'-phosphate yields three monosubstituted derivatives, at Lys-1, Lys-7 and Lys-41. A strong decrease in the yield of derivatives at Lys-7 and Lys-41 was observed when either p1 or p2 was specifically blocked by 5'-AMP or 3'-AMP respectively. These experiments indicate that both sites are needed for the reaction of pyridoxal 5'-phosphate with RNAase A to take place. The positive charge in one of the sites interacts with the phosphate group of pyridoxal 5'-phosphate, giving the proper orientation to the carbonyl group, which then reacts with the lysine residue present in the other site. The absence of reaction between pyridoxal 5'-phosphate and an RNAase derivative that has the p2 site blocked supports this hypothesis. Labelling of Lys-7 with pyridoxal 5'-phosphate has a more pronounced effect on the kinetics with RNA than with the smaller substrate 2',3'-cyclic CMP. In addition, when the phosphate moiety of the 5'-phosphopyridoxyl group was removed with alkaline phosphatase the kinetic constants with 2',3'-cyclic CMP returned to values very similar to those of the native enzyme, whereas a higher Km and lower Vmax. were still observed for RNA. This indicates that this new derivative has recovered a free p1 site and, hence, the capability to act on 2',3'-cyclic CMP, but the presence of the pyridoxyl group bound to Lys-7 is still blocking a secondary phosphate-binding site, namely p2. Finally, reaction of cyclohexane-1,2-dione at Arg-10 is suppressed in the presence of 3'-AMP but only a 19% decrease is observed with 5'-AMP, suggesting that Arg-10 is also close to the p2 phosphate-binding subsite.  相似文献   

3.
The binding of inosine 5' phosphate (IMP) to ribonuclease A has been studied by kinetic and X-ray crystallographic experiments at high (1.5 A) resolution. IMP is a competitive inhibitor of the enzyme with respect to C>p and binds to the catalytic cleft by anchoring three IMP molecules in a novel binding mode. The three IMP molecules are connected to each other by hydrogen bond and van der Waals interactions and collectively occupy the B1R1P1B2P0P(-1) region of the ribonucleolytic active site. One of the IMP molecules binds with its nucleobase in the outskirts of the B2 subsite and interacts with Glu111 while its phosphoryl group binds in P1. Another IMP molecule binds by following the retro-binding mode previously observed only for guanosines with its nucleobase at B1 and the phosphoryl group in P(-1). The third IMP molecule binds in a novel mode towards the C-terminus. The RNase A-IMP complex provides structural evidence for the functional components of subsite P(-1) while it further supports the role inferred by other studies to Asn71 as the primary structural determinant for the adenine specificity of the B2 subsite. Comparative structural analysis of the IMP and AMP complexes highlights key aspects of the specificity of the base binding subsites of RNase A and provides a structural explanation for their potencies. The binding of IMP suggests ways to develop more potent inhibitors of the pancreatic RNase superfamily using this nucleotide as the starting point.  相似文献   

4.
The cleavage pattern of oligocytidylic acid substrates by bovine pancreatic ribonuclease A (RNase A) was studied by means of reversed-phase HPLC. Oligocytidylic acids, ranging from dinucleotides to heptanucleotides, were obtained by RNase A digestion of poly(C). They were identified by MALDI-TOF mass spectrometry; it was confirmed that all of them corresponded to the general structure (Cp)(n)C>p, in which C>p indicates a 2',3'-cyclic phosphate. This is a confirmation of the proposed mechanism for RNase A, wherein the so-called hydrolytic (or second) step is in fact a special case of the reverse of transphosphorylation (first step). The patterns of cleavage for the oligonucleotide substrates show that the native enzyme has no special preference for endonucleolytic or exonucleolytic cleavage, whereas a mutant of the enzyme (K7Q/R10Q-RNase A) lacking p(2) (a phosphate binding subsite adjacent, on the 3' side, to the main phosphate binding site p(1)) shows a clear exonucleolytic pattern; a mutant (K66Q-RNase A) lacking p(0) (a phosphate binding subsite adjacent, on the 5' side, to the main phosphate binding site p(1)) shows a more endonucleolytic pattern. This indicates the important role played by the subsites on the preference for the bond cleaved. Molecular modeling shows that, in the case of the p(2) mutant, the amide group of glutamine can form a hydrogen bond with the 2',3'-cyclic terminal phosphate, whereas the distance to a 3',5'-phosphodiester bond is too long to form such a hydrogen bond. This could explain the preference for exonucleolytic cleavage shown by the p(2) mutant.  相似文献   

5.
A parameterizable program in Pascal was developed for VAX/VMScomputers to simulate the autoradiograms of gel-separated RNAfragments generated by partial cleavage of a folded RNA moleculeusing five specific RNases. Each screen displays the resultsof cleavage by either one enzyme or all five, with the RNA moleculelabeled at either of its ends (5' or 3'); each run is performedwith three different lengths and against a ladder containingalkaline hydrolysis products of the same RNA molecule as sizemarkers. The program should be useful for comparing actual resultswith predicted functional foldings of RNA molecules. Received on May 28, 1990; accepted on August 28, 1990  相似文献   

6.
7.
Jezewska MJ  Galletto R  Bujalowski W 《Biochemistry》2003,42(40):11864-11878
The tertiary structure of template-primer and gapped DNA substrates in the complex with rat polymerase beta (pol beta) has been examined using the fluorescence energy transfer method based on the multiple donor-acceptor approach. In these studies, we used DNA substrates labeled at the 5' end of the template strand and the 5' end of the primer with the fluorescent donor and/or acceptor. Measurements of the enzyme complex with the template-primer DNA substrate having a ten nucleotide long ssDNA extension indicate that the distance between the 5' end of the template strand and the 5' end of the primer decreases by approximately 9.8 A as compared to the free nucleic acid. Analogous experiments with the template-primer substrate, having the ssDNA extension with five nucleotide residues, show approximately 6.6 A distance decrease. Such large distance decreases indicate that the DNA is significantly bent in the binding site. Analysis of the data indicates that the bending occurs between the third and the fourth nucleotide of the ssDNA extension. The entire template strand is at the bend angle Theta(TP) = 85 +/- 7 degrees with respect to the dsDNA part of the DNA molecule. In the polymerase complex with the gapped DNA, the distance between the 5' ends of the DNA and the bend angle are 66 +/- 2.2 A and 65 +/- 6 degrees, respectively. These values are very similar to the same distance and bend angle of the gap complex in the crystal structure of the co-complex. The presence of the 5'-terminal PO(4)(-) group downstream from the primer does not affect the tertiary conformation of the gapped DNA, indicating that the effect of the phosphate group is localized at the ssDNA gap.  相似文献   

8.
A precursor molecule for 10 Sb RNA, the RNA moiety of the RNA processing enzyme RNase P, was purified, characterized for enzymatic activity, and compared to 10 Sb RNA and to RNase P. In these studies the K RNA, a dimeric precursor of tRNAGln-tRNALeu, coded by bacteriophage T4, was used as a substrate. This precursor contains two RNase P cleavage sites, one at each 5' end of the two tRNAs. The precursor 10 Sb and 10 Sb RNAs have the capacity to cleave the precursor tRNA molecule but only at the 5' end of tRNALeu, not at the 5' end of tRNAGln. Even when a substrate was prepared that contained only one site for RNase P (the one next to tRNAGln), this substrate was not cleaved by the RNA alone while the whole enzyme was effective in processing this substrate. The possible function of the protein of RNase P in the enzymatic reaction is discussed.  相似文献   

9.
In "The ends of a large RNA molecule are necessarily close", Yoffe et al. (Nucleic Acids Res 39(1):292-299, 2011) used the programs RNAfold [resp. RNAsubopt] from Vienna RNA Package to calculate the distance between 5' and 3' ends of the minimum free energy secondary structure [resp. thermal equilibrium structures] of viral and random RNA sequences. Here, the 5'-3' distance is defined to be the length of the shortest path from 5' node to 3' node in the undirected graph, whose edge set consists of edges {i, i + 1} corresponding to covalent backbone bonds and of edges {i, j} corresponding to canonical base pairs. From repeated simulations and using a heuristic theoretical argument, Yoffe et al. conclude that the 5'-3' distance is less than a fixed constant, independent of RNA sequence length. In this paper, we provide a rigorous, mathematical framework to study the expected distance from 5' to 3' ends of an RNA sequence. We present recurrence relations that precisely define the expected distance from 5' to 3' ends of an RNA sequence, both for the Turner nearest neighbor energy model, as well as for a simple homopolymer model first defined by Stein and Waterman. We implement dynamic programming algorithms to compute (rather than approximate by repeated application of Vienna RNA Package) the expected distance between 5' and 3' ends of a given RNA sequence, with respect to the Turner energy model. Using methods of analytical combinatorics, that depend on complex analysis, we prove that the asymptotic expected 5'-3' distance of length n homopolymers is approximately equal to the constant 5.47211, while the asymptotic distance is 6.771096 if hairpins have a minimum of 3 unpaired bases and the probability that any two positions can form a base pair is 1/4. Finally, we analyze the 5'-3' distance for secondary structures from the STRAND database, and conclude that the 5'-3' distance is correlated with RNA sequence length.  相似文献   

10.
N F Phillips 《Biochemistry》1988,27(9):3314-3320
Pyruvate,phosphate dikinase from Propionibacterium shermanii is strongly inhibited by fluorescein 5'-isothiocyanate (FITC). The time course of inactivation is biphasic, but the dependence of the pseudo-first-order rate constants on the inhibitor concentration indicates the formation of a reversible complex with the enzyme prior to covalent modification. The substrate/product nucleotide pairs MgATP and MgAMP protected against inactivation, while in the absence of Mg2+, both the nucleotides were ineffective. Previously, an essential lysine at the ATP/AMP subsite of the enzyme from Bacteroides symbiosus had been implicated by use of the 2',3'-dialdehyde of AMP (oAMP) [Evans, C. T., Goss, N. H., & Wood, H. G. (1980) Biochemistry 19, 5809]. The inhibition by FITC was competitive with MgAMP, and a multiple inhibition analysis plot indicated that binding of oAMP and FITC was mutually exclusive. These observations suggest that FITC and oAMP bind at the nucleotide binding site and probably to the same reactive lysine that is modified by oAMP. With peptide mapping by high-performance liquid chromatography, FITC was found to be a suitable probe for isolating the peptide from the ATP/AMP subsite.  相似文献   

11.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

12.
F X Sullivan  T R Cech 《Cell》1985,42(2):639-648
The Tetrahymena rRNA intervening sequence (IVS) excises itself from the pre-rRNA and then mediates its own cyclization. We now find that certain di- and trinucleotides with free 3' hydroxyl groups reopen the circular IVS at the cyclization junction, producing a linear molecule with the oligonucleotide covalently attached to its 5' end. This linear molecule recyclizes with release of the added oligonucleotide. Thus the IVS RNA, like an enzyme, lowers the activation energy for both forward and reverse cleavage-ligation reactions. Certain combinations of pyrimidines are required for circle reopening. The most reactive oligonucleotide is UCU. This sequence resembles those preceding the major and minor cyclization sites in the linear IVS RNA (UUU and CCU) and the 5' splice site in the pre-rRNA (UCU). We propose that an oligopyrimidine binding site within the IVS binds the sequences upstream of each of these target sites for cleavage-ligation.  相似文献   

13.
The X-ray crystal structure of a complex between ribonuclease T1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2. 0 A resolution. This ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. On the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(Sp)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [Steyaert, J., and Engleborghs (1995) Eur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.  相似文献   

14.
We have purified an RNA helicase to near homogeneity from nuclear extracts of HeLa cells. The enzyme migrated as a 130-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and exhibited a sedimentation coefficient of 6.4 on glycerol gradient centrifugation. The enzyme translocated in a 3' to 5' direction and acted catalytically, displacing at least a 4-fold molar excess of duplex RNA compared with the enzyme added. All eight common nucleoside triphosphates supported RNA helicase activity at relatively low concentrations (Km in values in the 15-20 microM level). In the presence of RNA and some single-stranded DNAs, the RNA helicase hydrolyzed all nucleoside triphosphates to nucleoside diphosphates and inorganic phosphate. The enzyme displaced deoxyribooligonucleotides provided they were hydrogen-bonded to RNA possessing 3' single-stranded regions, but it did not displace ribooligonucleotides hydrogen-bonded to DNA containing 3' single-stranded regions. The enzyme, in the absence of ATP, binds to both single-stranded RNA and DNA, but the amount of complex formed with RNA was 20-fold greater than the complex formed with DNA. In both cases, the complex formed in the absence of ATP was rapidly reversed by the addition of ATP and not by adenyl-5'-yl (beta,gamma-methylene)-diphosphate. We propose that the enzyme can bind to both single-stranded RNA and DNA and hydrolyze ATP, but by virtue of its greater stability on RNA, the enzyme can only translocate on RNA possessing 3' single-stranded regions.  相似文献   

15.
The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.  相似文献   

16.
R B Waring 《Nucleic acids research》1989,17(24):10281-10293
The group I intron from the rRNA precursor of Tetrahymena undergoes self-splicing. The intron RNA catalyst contains about 400 phosphate groups. Their role in catalysis has been investigated using phosphorothioate substituted RNA. In such RNA one of the peripheral oxygens of the phosphodiesters is replaced with sulfur. Incorporation of adenosine 5' phosphorothioate in either the 5' or 3' half of the ribozyme blocked splicing whereas incorporation of uridine 5' phosphorothioate only blocked splicing if the substitution was in the 3' half of the molecule. Modification-interference assays located two major and three minor inhibitory phosphorothioate substitutions suggesting that the corresponding phosphates play a significant role in self-splicing. These are all located in the most highly conserved region of the intron.  相似文献   

17.
Processes involved in RNA metabolism can be distinguished by the nature of the sugar phosphate substitution (5' or 3') in intermediates or products. Although it is known that 3'-phosphates are produced via a 2',3'-cyclic phosphate intermediate, formed by nucleophilic attack on the phosphodiester bond by the adjacent 2'-OH, little is known about the production of 5'-phosphate products. We attribute 5'-phosphate intermediates and products to a preferred configuration of the pentavalent phosphorus intermediate resulting from the attack of a distant nucleophile. This intermediate is favored, since its formation is possible without major conformational changes in the molecule. Based on the two products of nucleic acid hydrolysis we define: the conjunct and disjunct nucleophile mechanisms, each of which would have independent origins. Indeed, the products of an overwhelming number of nucleases and RNases are consistent with one of these mechanistic models demonstrating that the origin of these enzymes are deeply rooted in the intrinsic chemistry of phosphate esters.  相似文献   

18.
To clarify the substrate-recognition mechanism of carboxypeptidase Y, Fmoc-(Glu)n Ala-OH (n = 1 to 6), Fmoc-(Glu)n Ala-NH2 (1 to 5), and Fmoc-Lys(Glu)3Ala-NH2 were synthesized, and kinetic parameters for these substrates were measured. Km for Fmoc-peptides significantly decreased as peptide length increased from n = 1 to n = 5 with only slight changes in kcat. Km for Fmoc-(Glu)(5,6)Ala-OH were almost the same as one for protein substrates described previously (Nakase et al., Bull. Chem. Soc. Jpn., 73, 2587-2590). These results show that the enzyme has six subsites (S1' and S1-S5). Each subsite affinity calculated from the Km revealed subsite properties, and from the differences of subsite affinity between pH 6.5 and 5.0, the residues in each subsite were predicted. For Fmoc-peptide amide substrates, the priorities of amidase and carboxamide peptidase activities were dependent on the substrate. It is likely that the interactions between side chains of peptide and subsites compensate for the lack of P1'-S1' interaction, so the amidase activity prevailed for Fmoc-(Glu)(3,5)Ala-NH2. These results suggest that these subsites contribute extensively to substrate recognition rather than a hydrogen bond network.  相似文献   

19.
Reactions at the termini of tRNA with T4 RNA ligase.   总被引:4,自引:1,他引:3       下载免费PDF全文
T4 RNA ligase will catalyze the addition of nucleoside 3', 5'-bisphosphates onto the 3' terminus of tRNA resulting in tRNA molecule one nucleotide longer with a 3' terminal phosphate. Under appropriate conditions the reaction is quantitative and, if high specific radioactivity bisphosphates are used, it provides an efficient means for in vitro labeling of tRNA. Although the 3' terminal hydroxyl is a good acceptor, the 5' terminal phosphate in most tRNA's is not an effective donor in the RNA ligase reaction. This poor reactivity is due to the secondary structure of the 5' terminal nucleotide. If E. Coli tRNAf Met is used, the 5' phosphate is reactive and the major product with RNA ligase is the cyclic tRNA.  相似文献   

20.
Polynucleotide kinase from E. coli infected with the PseT 1 mutant of bacteriophage T4 has been isolated. The PseT 1 enzyme purifies similarly to normal polynucleotide kinase and effectively transfers the gamma phosphate of ATP to the 5' terminal hydroxyl of DNA and RNA. The PseT 1 and normal enzymes require similar magnesium ion concentrations, have the same pH optima and are both inhibited by inorganic phosphate. However, the PseT 1 enzyme is totally lacking the 3' phosphatase activity associated with normal polynucleotide kinase. The PseT 1 enzyme is a useful tool for the preparation of oligonucleotides with 3' and 5' terminal phosphates for use as susbstrates for RNA ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号