共查询到20条相似文献,搜索用时 93 毫秒
1.
Eph受体酪氨酸激酶及其配体ephrin广泛参与神经系统的发育,如轴突导向、细胞迁移、体节形成和血管生成。最近研究显示的Ephephrin在突触的定位提示其与突触可塑性有关。Ephephrin对成年神经系统的可塑性、学习和记忆,以及神经损伤后的再生可能具有重要的调节作用。 相似文献
2.
提出突触可塑性的一个可能的数学公式,尝试用这个公式统一地描述突触长时程增强效应和突触长时程抑制效应。 相似文献
3.
突触的可塑性与学习,记忆机制 总被引:11,自引:0,他引:11
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。 相似文献
4.
5.
6.
7.
8.
9.
神经胶质细胞与突触可塑性研究新进展 总被引:2,自引:0,他引:2
突触的可塑性是研究学习与记忆的基础,很长时间以来人们对突触的可塑性研究主要集中在神经元和突触上;而胶质细胞的作用较少受到注意。最近的研究发现胶质细胞也参与突触的构成并影响突触的活动。研究表明中枢神经系统中的胶质细胞包括星形胶质细胞、小胶质细胞和少突胶质细胞可分别通过谷氨酸、丝氨酸、甘氨酸、ATP等信号调节突触的可塑性,从而为突触的可塑性研究提供了新的思路和方向,并有助于阐明突触的发生以及学习与记忆的机制。 相似文献
10.
11.
In neuroscience, myosin V motor proteins have attracted attention since they are highly expressed in brain, and absence of myosin Va in man leads to a severe neurological disease called Griscelli syndrome. While in some cells myosin V is described to act as a vesicle transport motor, an additional role in exocytosis has emerged recently. In neurons, myosin V has been linked to exocytosis of secretory vesicles and recycling endosomes. Through these functions, it is implied in regulating important brain functions including the release of neuropeptides by exocytosis of large dense-core vesicles and the insertion of neurotransmitter receptors into post-synaptic membranes. This review focuses on the role of myosin V in (i) axonal transport and stimulated exocytosis of large dense-core vesicles to regulate the secretion of neuroactive substances, (ii) tethering of the endoplasmic reticulum at cerebellar synapses to permit long-term depression, (iii) recycling of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors at hippocampal synapses during long-term potentiation, and (iv) recycling of nicotinic acetylcholine receptors at the neuromuscular junction. Myosin V is thus discussed as an important modulator of synaptic plasticity. 相似文献
12.
Hui Lu Hyungju Park Mu-Ming Poo 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1633)
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite. 相似文献
13.
14.
Direction selectivity (DS) of simple cells in the primary visual cortex was recently suggested to arise from short-term synaptic depression in thalamocortical afferents (Chance F, Nelson S, Abbott L (1998), J. Neuroscience 18(12): 4785–4799). In the model, two groups of afferents with spatially displaced receptive fields project through either depressing and non-depressing synapses onto the V1 cell. The degree of synaptic depression determines the temporal phase advance of the response to drifting gratings. We show that the spatial displacement and the appropriate degree of synaptic depression required for DS can develop within an unbiased input scenario by means of temporally asymmetric spike-timing dependent plasticity (STDP) which modifies both the synaptic strength and the degree of synaptic depression. Moving stimuli of random velocities and directions break any initial receptive field symmetry and produce DS. Frequency tuning curves and subthreshold membrane potentials akin to those measured for non-directional simple cells are thereby changed into those measured for directional cells. If STDP is such that down-regulation dominates up-regulation the overall synaptic strength adapts in a self-organizing way such that eventually the postsynaptic response for the non-preferred direction becomes subthreshold. To prevent unlearning of the acquired DS by randomly changing stimulus directions an additional learning threshold is necessary. To further protect the development of the simple cell properties against noise in the stimulus, asynchronous and irregular synaptic inputs are required. 相似文献
15.
Highly stereotyped patterns of neuronal connections are laid down during the development of the nervous system via a range of activity independent and activity dependent mechanisms. Whereas the coarse hard-wiring of the nervous system appears to rely on molecular recognition events between the neuron, its pathway, and its target, the establishment of precisely patterned functional circuits is thought to be driven by neuronal activity. In this review we discuss the role that the neuronal cell adhesion molecule (NCAM) plays in morphological plasticity. Recent studies on NCAM and its probable species homologue in Aplysia (apCAM) suggests that an individual CAM can function to both promote synaptic plasticity and maintain the structure of the synapse. In the adult brain, changes between stability and plasticity are likely to underlie dynamic morphological changes in synaptic structures associated with learning and memory. In this review we use NCAM as an example to illustrate mechanisms that can change the function of an individual CAM from a molecule that promotes plasticity to one that does not. We also discuss evidence that NCAM promotes plasticity by activating a conventional signal transduction cascade, rather than by modulating adhesion perse. Finally, we consider the evidence that supports a role for NCAM in learning and memory. © 1995 John Wiley & Sons, Inc. 相似文献
16.
Our modeling study examines short-term plasticity at the synapse between afferents from electroreceptors and pyramidal cells in the electrosensory lateral lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. It focusses on steady-state filtering and coherence-based coding properties. While developed for electroreception, our study exposes general functional features for different mixtures of depression and facilitation. Our computational model, constrained by the available in vivo and in vitro data, consists of a synapse onto a deterministic leaky integrate-and-fire (LIF) neuron. The synapse is either depressing (D), facilitating (F) or both (FD), and is driven by a sinusoidally or randomly modulated Poisson process. Due to nonlinearity, numerically computed input-output transfer functions are used to determine the filtering properties. The gain of the response at each sinusoidally modulated frequency is computed by dividing the fitted amplitudes of the input and output cycle histograms of the LIF models. While filtering is always low-pass for F alone, D alone exhibits a gain resonance (non-monotonicity) at a frequency that decreases with increasing recovery time constant of synaptic depression (tau(d)). This resonance is mitigated by the presence of F. For D, F and FD, coherence improves as the synaptic conductance time constant (tau(g)) increases, yet the mutual information per spike decreases. The information per spike for D and F follows opposite trends as their respective time constants increase. The broadband but non-monotonic gain and coherence functions seen in vivo suggest that D and perhaps FD dynamics are involved at this synapse. Our results further predict that the likely synaptic configuration is a slower tau(g), e.g. via a mixture of AMPA and NMDA synapses, and a relatively smaller synaptic facilitation time constant (tau(f)) and larger tau(d) (with tau(f) smaller than tau(d) and tau(g)). These results are compatible with known physiology. 相似文献
17.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors. 相似文献
18.
《Electromagnetic biology and medicine》2013,32(2):137-144
Understanding the biological mechanisms by which extremely low-frequency (ELF, < 300 Hz) magnetic fields (MFs) interact with human brain activity is an active field of research. Such knowledge is required by international agencies providing guidelines for general public and workers exposure to ELF MFs (such as ICNIRP, the International Commission on Non-Ionizing Radiation Protection). The identification of these interaction mechanisms is extremely challenging, since the effects of ELF MF exposure need to be monitored and understood at very different spatial (from micrometers to centimeters) and temporal (from milliseconds to minutes) scales. One possibility to overcome these issues is to develop biophysical models, based on the systems of mathematical equations describing the electric or metabolic activity of the brain tissue. Biophysical models of the brain activity offer the possibility to simulate how the brain tissue interacts with ELF MFs, in order to gain new insights into experimental data, and to test novel hypotheses regarding interaction mechanisms. This paper presents novel hypotheses regarding the effects of power line (60 Hz in North America) MFs on human brain activity, with arguments from biophysical models. We suggest a hypothetic chain of events that could bridge MF exposure with detectable effects on human neurophysiology. We also suggest novel directions of research in order to reach a convergence of biophysical models of brain activity and corresponding experimental data to identify interaction mechanisms. 相似文献
19.
代谢型谷氨酸受体在突触可塑性中的作用 总被引:2,自引:0,他引:2
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。 相似文献
20.
作为一种有节律的神经活动,神经振荡现象发生在所有的神经系统中,例如大脑皮层、海马、皮层下神经核团以及感觉器官.本综述首先给出了已有的研究结果,即基于theta和gamma频段的同步神经振荡揭示了认知过程的起源与本质,如学习与记忆.然后介绍了关于神经振荡分析的新技术和算法,如表征神经元突触可塑性的神经信息流方向指数,并例... 相似文献