首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
泛素化修饰是真核生物细胞内重要的翻译后修饰类型,通过调节蛋白质活性、稳定性和亚细胞定位广泛参与细胞内各项信号传导与代谢过程,对维持正常生命活动具有重要意义。组蛋白作为染色质中主要的蛋白成分,与DNA复制转录、修复等行为密切相关,是研究翻译后修饰的热点。DNA损伤后,组蛋白泛素化修饰通过调节核小体结构、激活细胞周期检查点、影响修复因子的招募与装配等诸多途径参与损伤应答。同时,组蛋白泛素化修饰还能调节其他位点翻译后修饰,并通过这种串扰(crosstalk)作用调节DNA损伤应答。本文介绍了组蛋白泛素化修饰的主要位点和相关组分(包括E3连接酶、去泛素化酶与效应分子),以及这些修饰作用共同编译形成的信号网络在DNA损伤应答中的作用,最后总结了目前该领域研究所面临的一些问题,以期为科研人员进一步探索组蛋白密码在DNA损伤应答中的作用提供参考。  相似文献   

2.
小泛素相关修饰蛋白(small ubiquitin related modifier,SUMO)修饰作用是蛋白质翻译后修饰的重要方式。SUMO化修饰与泛素化作用极为相似,并且在某些靶蛋白上可以与泛素竞争结合位点,从而起到稳定靶蛋白的作用,并参与调节靶蛋白的细胞定位、膜离子通道功能、DNA损伤修复以及转录活性等。核受体是一类在生物体内广泛分布的、配体依赖的转录因子超家族,参与机体生长发育、细胞分化,以及体内许多生理、病理过程中的基因表达调控。最近研究发现,核受体的SU-MO修饰可通过影响核受体的稳定性、转录活性、亚细胞定位等多重途径影响核受体的功能,并影响机体炎症反应及相关疾病的发生发展。本文对核受体的SUMO修饰在核受体功能调控中的作用,以及与机体相关疾病之间的关系做一简要综述。  相似文献   

3.
蛋白质的翻译后修饰在很大程度上决定了蛋白质的活性、细胞定位、稳定性及蛋白质之间的相互作用.而在DNA损伤修复过程中,通过调控不同修复蛋白的翻译后修饰来影响他们的活性及细胞定位,进而导致DNA损伤修复途径的不同和修复结果的差异.新近研究表明,蛋白质的SUMO化修饰在DNA损伤修复和基因组稳定性的维护方面发挥重要作用.本文将对SUMO化修饰对DNA损伤修复的调控的最新研究进展做一综述.  相似文献   

4.
蛋白质翻译后修饰是实现蛋白质多样化功能的一种重要的调控方式,泛素化和SUMO化作为重要的蛋白质翻译后修饰在转录调节、染色质结构及基因组稳定性维持以及DNA修复中扮演重要角色。由于泛素(ubiquitin,Ub)、小泛素相关修饰物(small ubiquitin-related modifier,SUMO)都是修饰目标蛋白质上的赖氨酸,因此在通常情况下,二者对于同一个蛋白质的翻译后修饰存在拮抗或协同作用,但具体调控机理目前研究还不多。DNA损伤与肿瘤的发生发展密切相关。DNA损伤若未能得到及时修复或者修复过程中出现异常,将会导致肿瘤的发生,甚至会产生致死型突变。近年来,对于DNA损伤修复过程中涉及到的蛋白质翻译后修饰的研究已成为研究热点。本文旨在阐明泛素化、SUMO化对DNA损伤修复过程中关键因子的调控作用,为了解多种翻译后修饰对DNA修复过程的调控提供新视角。  相似文献   

5.
分化的胚软骨表达蛋白1(differentiated embryo-chondrocyte expressed gene 1,DEC1)作为一种时钟蛋白,除了在周期节律的调控中发挥转录抑制作用外,还在能量代谢以及多种肿瘤相关的信号通路的调控中发挥重要作用。此外,蛋白质的翻译后修饰是实现蛋白质功能精细调控的一种重要方式。目前发现,DEC1主要可被两种翻译后修饰,即泛素化和SUMO化修饰。尽管泛素化和SUMO化是两种过程非常类似的蛋白质翻译后修饰方式,但是它们对目的蛋白功能的调控却截然不同。由于泛素化和SUMO化与底物的作用靶点都是赖氨酸(Lys),因此在多数情况下,泛素化和SUMO化以拮抗性的方式调控底物蛋白的功能。鉴于此,该文旨在阐述泛素化和SUMO化修饰对DEC1功能的拮抗调节过程,为了解时钟蛋白DEC1对多种信号通路的调控过程中的分子机制提供新的思路。  相似文献   

6.
组蛋白修饰与基因调控   总被引:2,自引:0,他引:2  
基因表达是一个受多因素调控的复杂过程,组蛋白是染色体基本结构-核小体中的重要组成部分,其N-末端氨基酸残基可发生乙酰化、甲基化、磷酸化、泛素化、多聚ADP糖基化等多种共价修饰作用,组蛋白的修饰可通过影响组蛋白与DNA双链的亲性,从而改变染色质的疏松或凝集状态,或通过影响其它转录因子与结构基因启动子的亲和性来发挥基因调控作用,组蛋白修饰对基因表达的调控有类似DNA遗传密码的调控作用。  相似文献   

7.
基因的表观调控通常由化学基团对组蛋白和非组蛋白的动态调控共同决定,而蛋白质翻译后修饰(post-translational modification,PTM)作为表观调控的主要因素,以共价连接的方式在蛋白质特异位点添加小分子,进而对蛋白质结构、功能、稳定性以及活性产生一定影响,最终影响生命活动进程。而染色质中修饰语言的错误书写、拼读、删除是人类癌症中常见的、有时是早期和关键的事件,可通过诱导表观遗传、转录组和表型改变促进肿瘤的发生。其中赖氨酸作为一种两亲性氨基酸,具有疏水侧链,且赖氨酸具有正电荷可以被酰基化修饰所中和,因此赖氨酸是最常发生修饰的氨基酸。酰基化修饰不仅可以改变蛋白质的结构影响蛋白质的功能,而且在DNA转录、损伤修复、氧化应激、细胞代谢、细胞周期、衰老、血管生成等生命活动中起着至关重要的作用。接下来该文就最近发现的新型酰基化修饰展开综述,回顾新型酰基化修饰的发现过程、调控机制以及其在肿瘤发生发展中的重要作用。  相似文献   

8.
何珊  张令强 《遗传》2015,37(9):911-917
蛋白质泛素化修饰过程在调节各种细胞生物学功能的过程中发挥了非常重要的作用,如细胞周期进程、DNA损伤修复、信号转导和各种蛋白质膜定位等。泛素化修饰可分为多聚泛素化修饰和单泛素化修饰。多聚泛素化修饰系统可以通过对底物连接不同类型的多泛素化链调节蛋白质的功能。多聚泛素化修饰中已知7种泛素链连接方式均为泛素内赖氨酸连接方式。近几年发现了第8种类型的泛素链连接形式即线性泛素化,其泛素链的连接方式是由泛素甲硫氨酸的氨基基团与另一泛素甘氨酸的羧基基团相连形成泛素链标记。目前研究表明线性泛素化修饰在先天性免疫和炎症反应等多个过程中发挥着非常重要的作用。募集线性泛素链的泛素连接酶E3被称为LUBAC复合体,其组成底物以及其活性调控机制和功能所知甚少。本文综述了募集线性泛素化链的泛素连接酶、去泛素化酶、底物等活性调控机制及其在先天性免疫等多个领域中的功能,分析了后续研究方向,以期为相关研究提供参考。  相似文献   

9.
SUMO化: 一种重要的体内翻译后蛋白质修饰系统   总被引:2,自引:0,他引:2  
靶蛋白被小泛素相关修饰物(small ubiquitin-related modifier,SUMO)修饰已经成为真核细胞特有的翻译后蛋白质修饰标志之一.SUMO与靶蛋白之间这种可逆的共价连接,在核质运输、DNA与蛋白质结合活性、蛋白质之间相互作用、转录调控、DNA修复以及维持基因组稳定等方面均发挥着重要的调节作用.在许多人类疾病如癌症和神经退化性疾病中,SUMO化修饰作用对疾病的发生与发展起着极为重要的作用.阐明SUMO化修饰在这些疾病中的功能,将为疾病的治疗开辟一条崭新的思路.  相似文献   

10.
细胞对DNA损伤进行精确、高效修复的机制被称为DNA损伤应答机制,增殖细胞核抗原(PCNA)在DNA损伤修复机制中起着核心的作用。当细胞遭遇到DNA损伤时,PCNA通过泛素化及类泛素化的翻译后修饰对DNA修复过程进行调控。本文重点阐述DNA损伤修复的不同方式,以及泛素/类泛素化相关蛋白参与调控DNA损伤修复过程的研究进展,并分析了DNA损伤修复与机体的衰老和发育之间的密切关系,为研究DNA修复蛋白的缺失在相关疾病中的作用机制提供新思路。  相似文献   

11.
12.
Transforming growth factor-beta (TGFbeta) conveys regulatory signals through multiple intracellular pathways, subsequently affecting various cellular functions. To identify new targets for TGFbeta, we studied the changes in the proteome of Mv1Lu lung epithelial cells in response to TGFbeta1 treatment. Thirty-eight non-abundant protein spots, affected by TGFbeta1, were selected, and proteins were identified by peptide mass-fingerprinting (PMF). Among them, proteins involved in regulation of immune response, apoptosis, regulation of TGFbeta signalling, metabolism and DNA repair were identified. Twenty-eight of the 38 proteins are new targets for TGFbeta1, thus suggesting novel ways of integration of TGFbeta signalling in intracellular regulatory processes. We show that TGFbeta1-dependent decrease in expression of one of the new targets, Rad51, correlates with a decrease in DNA repair efficiency. This was evaluated by formation of nuclear Rad51-containing DNA repair complexes in response to DNA damage, by single cell gel electrophoresis and by cell survival assay. The TGFbeta1-dependent inhibition of DNA repair was reversed by ectopic overexpression of Rad51. Therefore, TGFbeta can promote DNA instability through down-regulation of Rad51 and inhibition of DNA repair.  相似文献   

13.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   

14.
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.  相似文献   

15.
16.
RAD6 in the yeast Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme essential for DNA repair as well as for a number of other biological processes. It is believed that the functions of Rad6p require the ubiquitination of target proteins, but its substrates as well as other interacting proteins are largely unknown. Rad6p homologues of higher eukaryotes have a number of amino acid residues in the C-terminal α-helix, which are conserved from yeast to man but are absent from most other yeast ubiquitin-conjugating enzymes (Ubcs). This specific conservation suggests that the C-terminal a-helix is important for the unique activities of the Rad6p family of Ubcs. We have investigated the effects of mutating this highly conserved region on the ubiquitination of model substrates in vitro and on error-free DNA repair in vivo. C-terminal point and deletion mutants of Rad6p differentially affected its in vitro activity on various substrates, raising the possibility that Rad6p interacts with its substrates in vivo by similar mechanisms. The distal part of the C-terminal u-helix is also essential for error-free DNA repair in vivo. Overexpression of Rad18p, a single-stranded DNA-binding protein that also interacts with Rad6p, alleviates the DNA repair defects of the C-terminal α-helix mutants to different degrees. This indicates that the C-terminal α-helix of Rad6p mediates its interaction with Rad18p, an essential step in DNA repair. Models of Rad6p action propose that its ubiquitination function is followed by proteolysis of unknown ubiquitinated targets. Mutants affecting several functions of the 26S proteasome retain wild-type capacity for error-free DNA repair. This raises the possibility that ubiquitination by Rad6p in DNA repair does not target proteins for proteasomal degradation.  相似文献   

17.
Recombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and Rad54. Upon treatment of mammalian cells with ionizing radiation, these proteins accumulate into foci at sites of DNA damage induction. We show that these foci are dynamic structures of which Rad51 is a stably associated core component, whereas Rad52 and Rad54 rapidly and reversibly interact with the structure. Furthermore, we show that the majority of the proteins are not part of the same multi-protein complex in the absence of DNA damage. Executing DNA transactions through dynamic multi-protein complexes, rather than stable holo-complexes, allows flexibility. In the case of DNA repair, for example, it will facilitate cross-talk between different DNA repair pathways and coupling to other DNA transactions, such as replication.  相似文献   

18.
19.
The importance of RAD52 in establishment and maintenance of genomic structure has been established by genetic experiments in the yeast Saccharomyces cerevisiae, where mutation of RAD52 has been shown to diminish DNA repair and recombination of a variety of markers, including the rDNA [1] [2] [3]. Biochemical analysis has shown that yeast and mammalian Rad52 proteins have some identical functions in vitro [4] [5] [6], but targeted deletion of Rad52 in vertebrates has little effect on repair and recombination [7] [8]. These results raise the question of whether mammalian Rad52 does indeed function in recombination and/or repair. Here we show that Rad52 is distributed throughout the nucleoplasm in actively cycling mammalian cells and is localized specifically to the nucleoli in S phase. In response to ionizing radiation, Rad52 relocalizes to form distinctive foci which are distributed throughout the nucleus and which colocalize with Rad50 foci in the DNA damage response. These data suggest that rDNA recombination and DNA repair are functions shared by mammalian Rad52 and its S. cerevisiae homolog, and provide evidence for the coordinated action of Rad50 and Rad52 in DNA repair.  相似文献   

20.
The Rad6 ubiquitin-conjugating enzyme in Saccharomyces cerevisiae is known to interact with three separate ubiquitin ligase proteins (Ubr1, Rad18, and Bre1) specific to different targets. The Rad6/Rad18 complex is central to translesion synthesis and the family of DNA transactions known as post-replication repair (PRR). A less well-known aspect of Rad6-mediated DNA repair, however, involves its function with Bre1 in mono-ubiquitinating the histone H2B residue lysine 123. Here, we review how this ubiquitination impacts histone H3 methylation, and how this in turn impacts the DNA damage response. In S. cerevisiae this pathway is required for checkpoint activation in G1, and contributes to DNA repair via the homologous recombination pathway (HRR) in G2 cells. Thus, RAD6 clearly plays a role in HRR in addition to its central role in PRR. We also summarize what is known about related repair pathways in other eukaryotes, including mammals. Recent literature emphasizes the role of methylated histones in S. cerevisiae, Schizosaccharomyces pombe and mammals in attracting the related DNA damage checkpoint proteins Rad9, Crb2 and 53BP1, respectively, to chromatin at the sites of DNA double-strand breaks. However, the specific histone modification pathways involved diverge in these different eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号