首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A membrane potential jump was induced by the addition of valinomycin in the presence of a KCl concentration gradient across the membrane of Rhodopseudomonas sphaeroides chromatophores. As well as a carotenoid band shift, which is known to be an indicator of membrane potential, absorbance changes due to the oxidation-reduction reactions of cytochromes accompanied the jump. Under aerobic conditions with no reductant added, a part of cytochrome c2 was reduced by an inside-positive potential jump of about 100 mV in the time range of tens of seconds. This can be explained by the location of the cytochrome on the inner side of the chromatophore membrane and electrophoretic flow of electrons across the membrane. On the other hand, in the presence of 1 mM ascorbate, a similar jump of membrane potential induced a rapid oxidation of cytochrome c2 and a subsequent reduction. A rapid reduction of b-type cytochrome was also observed. Antimycin A inhibited the c2 oxidation, but did not inhibit the b reduction. The oxidation of cytochrome c2 may be explained by a diffusion-potential-induced electron flow to cytochrome b and a simultaneous electron donation by cytochrome b and cytochrome c2 to a common electron acceptor, possibly a quinone.  相似文献   

2.
Heimann S  Ponamarev MV  Cramer WA 《Biochemistry》2000,39(10):2692-2699
Based on the atomic structures of the mitochondrial cytochrome bc(1) complex, it has been proposed that the soluble domain of the [2Fe-2S] Rieske iron-sulfur protein (ISP) must rotate by ca. 60 degrees and translate through an appreciable distance between two binding sites, proximal to cytochrome c(1) and to the lumen-side quinol binding site. Such motional freedom implies that the electron-transfer rate should be affected by the lumenal viscosity. The flash-induced oxidation of cytochrome f, the chloroplast analogue of cytochrome c(1), was found to be inhibited reversibly by increased lumenal viscosity, as was the subsequent reduction of both cytochrome b(6) and cytochrome f. The rates of these three redox reactions correlated inversely with lumenal viscosity over a viscosity range of 1-10 cP. Reduction of cytochrome b(6) and cytochrome f was not concerted. The rate of cytochrome f reduction was observed to be approximately half that of cytochrome b(6) regardless of the actual viscosity, implying that the path length traversed by the ISP in reduction of cytochrome f is twice that of cytochrome b(6). This suggests that upon initiation of electron transfer by a light flash, cytochrome b(6) reduction requires movement of reduced ISP from an initial position predominantly proximal to cytochrome f, apparently favored by the reduced ISP, to the quinol binding site at which the oxidant-induced reduction of cytochrome b(6) is initiated. Subsequent reduction of cytochrome f requires the additional movement of the ISP back to a site proximal to cytochromef. There is no discernible viscosity dependence for cytochrome b(6) reduction under oxidizing conditions, presumably because the oxidized ISP preferentially binds proximal to the quinone binding niche. The dependence of the cytochrome redox reaction on ambient viscosity implies that the tethered diffusional motion of the ISP is part of the rate limitation for charge transfer through the b(6)f complex.  相似文献   

3.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

4.
A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous illumination. The typical rate of photochemical excitation by a laser diode at 810 nm was 2.200 s-1, and the rates of stationary turnover of the reaction center (one-half of that of cytochrome photooxidation) were 600 +/- 70 s-1 at pH 6 and 400 +/- 50 s-1 at pH 8. The rate of turnover showed strong pH dependence, indicating the contribution of different rate-limiting processes. The kinetic limitation of the photocycle was attributed to the turnover of the cytochrome c binding site (pH < 6), light intensity and quinone/quinol exchange (6 < pH < 8), and proton-coupled second electron transfer in the quinone acceptor complex (pH > 8). The analysis of the double-reciprocal plot of the rate of turnover versus light intensity has proved useful in determining the light-independent (maximum) turnover rate of the reaction center (445 +/- 50 s-1 at pH 7.8).  相似文献   

5.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.  相似文献   

6.
The reoxidation of reduced yeast Complex III by oxidants believed to react with cytochrome c1 exhibited multiple phases for both cytochrome c1 and the cytochromes b; the reoxidation of cytochrome b, but not cytochrome c1, was markedly slowed by the presence of antimycin. The data are consistent with the Q-cycle or any other scheme which proposes a branched path for electron transport between the cytochrome b centers and the endogenous Q6, provided certain constraints are relaxed. The reoxidation of the endogenous quinone proceeded at a rate comparable to that of the rapidly reacting cytochrome b and appeared to be complete within 100 ms. Removal of the endogenous quinone did not change the rate or extent of reoxidation of any of the heme centers, demonstrating that quinone is not required for electron transport between cytochromes b and the iron-sulfur cluster. This result is inconsistent with the requirements of the Q-cycle. Funiculosin completely inhibited the reoxidation of cytochrome b whereas the reoxidation of cytochrome c1 exhibited simple first-order kinetics in the presence of this inhibitor, implying that the iron-sulfur cluster is on the direct path of electron transfer from cytochrome b to cytochrome c1. Potent inhibition of cytochrome b oxidation was also observed with myxothiazol and mucidin. The reaction of reduced Complex III with Q1 also exhibited multiple phases in the oxidation of the cytochrome b centers; these phases were unaffected by the presence of myxothiazol. Addition of antimycin, or removal of the endogenous quinone, eliminated the rapid phases; only one of the cytochrome b centers was oxidized under these conditions. Epr showed that it is the low-potential cytochrome b that is the species rapidly oxidized.  相似文献   

7.
Modular kinetic analysis was used to determine the sites in plant mitochondria where charge-screening stimulates the rate of electron transfer from external NAD(P)H to oxygen. In mitochondria isolated from potato (Solanum tuberosum L.) tuber callus, stimulation of the rate of oxygen uptake was accompanied by a decrease in the steady-state reduction level of coenzyme Q, and by a small decrease in the steady-state reduction level of cytochrome c. Modular kinetic analysis around coenzyme Q revealed that stimulation of the rate was due to stimulation of quinol oxidation via the cytochrome pathway (cytochrome bc1, cytochrome c and cytochrome c oxidase). It was not a consequence of any effect on quinone reduction (by external NADH or NADPH dehydrogenase). This explains the salt-induced decrease in the steady-state reduction level of coenzyme Q. Analysis around cytochrome c revealed that stimulation by salts was due to a dual effect on the respiratory chain. The kinetic curves for the oxidation and reduction pathways of cytochrome c revealed that they were both activated by salt, the simultaneity explaining the small variation observed in the steady-state reduction level of cytochrome c. A simple kinetic core model is used to show that changes in the rate of dissociation of cytochrome c from the membrane can explain the observed kinetic changes in both cytochrome c reduction and cytochrome c oxidation. The stimulation is proposed to be the result of an increase in the rate constant of cytochrome c dissociation from the membrane induced by cation screening. We conclude that this type of modular kinetic analysis is a powerful tool to identify and quantitatively characterize multiple-site effects on the mitochondrial respiratory chain.  相似文献   

8.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

9.
Pseudomonas aeruginosa strains deficient in the genes for cytochrome c1, a subunit of the cytochrome bc1 complex, or the tetraheme membrane protein NapC, which is similar to NirT of Pseudomonas stutzeri, were constructed and their growth was investigated. The cytochrome c1 mutant could not grow under anaerobic conditions with nitrite as an electron acceptor and did not reduce nitrite in spite of its producing active nitrite reductase. NirM (cytochrome c551) and azurin, which are the direct electron donors for nitrite reductase, were reduced by succinate in the presence of the membrane fraction from the wild-type strain as a mediator but not in the presence of that from the cytochrome c1 mutant. These results indicated that cytochrome bc1 complex was necessary for electron transfer from the membrane quinone pool to nitrite reductase. The NapC mutant grew anaerobically at the expense of nitrite, indicating that NapC was not necessary for nitrite reduction.  相似文献   

10.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

11.
Aquifex aeolicus, a hyperthermophilic and microaerophilic bacterium, obtains energy for growth from inorganic compounds alone. It was previously proposed that one of the respiratory pathways in this organism consists of the electron transfer from hydrogen sulfide (H(2)S) to molecular oxygen. H(2)S is oxidized by the sulfide quinone reductase, a membrane-bound flavoenzyme, which reduces the quinone pool. We have purified and characterized a novel membrane-bound multienzyme supercomplex that brings together all the molecular components involved in this bioenergetic chain. Our results indicate that this purified structure consists of one dimeric bc(1) complex (complex III), one cytochrome c oxidase (complex IV), and one or two sulfide quinone reductases as well as traces of the monoheme cytochrome c(555) and quinone molecules. In addition, this work strongly suggests that the cytochrome c oxidase in the supercomplex is a ba(3)-type enzyme. The supercomplex has a molecular mass of about 350 kDa and is enzymatically functional, reducing O(2) in the presence of the electron donor, H(2)S. This is the first demonstration of the existence of such a respirasome carrying a sulfide oxidase-oxygen reductase activity. Moreover, the kinetic properties of the sulfide quinone reductase change slightly when integrated in the supercomplex, compared with the free enzyme. We previously purified a complete respirasome involved in hydrogen oxidation and sulfur reduction from Aquifex aeolicus. Thus, two different bioenergetic pathways (sulfur reduction and sulfur oxidation) are organized in this bacterium as supramolecular structures in the membrane. A model for the energetic sulfur metabolism of Aquifex aeolicus is proposed.  相似文献   

12.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

13.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

14.
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration.  相似文献   

15.
D M Arciero  C Balny  A B Hooper 《Biochemistry》1991,30(48):11466-11472
During oxidation of hydroxylamine, hydroxylamine oxidoreductase (HAO) transfers two electrons to tetraheme cytochrome c554 at rates sufficient to account for physiological rates of oxidation of ammonia to nitrite in Nitrosomonas europaea. Spectroscopic changes indicate that the two electrons are taken up by a high-potential pair of hemes (E degrees' = +47 mV) (one apparently high spin and one low spin). During single-turnover experiments, in which the reduction of oxidized cytochrome c554 by NH2OH-reduced HAO is monitored, one electron is taken up by the high-spin heme at a rate too fast to monitor directly (greater than 100 s-1) but which is inferred either by a loss of amplitude (relative to that observed under multiple-turnover conditions) or is slowed down by increasing ionic strength (greater than or equal to 300 mM KCl). The second electron is taken up by the low-spin heme at a 10-30-fold slower rate. The latter kinetics appear multiphasic and may be complicated by a transient oxidation of HAO due to the rapid transfer of the first electron into the high-spin heme of cytochrome c554. Under multiple-turnover conditions, a "slower" rate of reduction is observed for the high-spin heme of cytochrome c554 with a maximum rate constant of approximately 30 s-1, a value also obtained for the reduction, by NH2OH, of the cytochrome c554 high-spin heme within an oxidized HAO/c554 complex. Under these conditions, the maximum rate of reduction of the low-spin heme was approximately 11.0 s-1. Both rates decreased as the concentration of cytochrome c554 was increased above the concentration of HAO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Roger C. Prince  P.Leslie Dutton 《BBA》1977,462(3):731-747
We have examined the thermodynamic properties of the physiological electron donor to ferricytochrome c2 in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. This donor (Z), which is capable of reducing the ferri-cytochrome with a halftime of 1–2 ms under optimal conditions, has an oxidation-reduction midpoint potential of close to 150 mV at pH 7.0, and apparently requires two electrons and two protons for its equilibrium reduction.

The state of reduction of Z, which may be a quinone · protein complex near the inner (cytochrome c2) side of the membrane, appears to govern the rate at which the cyclic photosynthetic electron transport system can operate. If Z is oxidized prior to the flash-oxidation of cytochrome c2, the re-reduction of the cytochrome takes hundreds of milliseconds and no third phase of the carotenoid bandshift occurs. In contrast if Z is reduced before flash activation, the cytochrome is rereduced within milliseconds and the third phase of the carotenoid bandshift occurs. The prior reduction of Z also has a dramatic effect on the uncoupler sensitivity of the rate of electron flow; if it is oxidized prior to activation, uncoupler can stimulate the cytochrome re-reduction after several turnovers by less than tenfold, but if it is reduced prior to activation, the stimulation after several turnovers can be as dramatic as a thousandfold. The results suggest that Z plays a central role in controlling electron and proton movements in the ubiquinone cytochrome b-c2 oxido-reductase.  相似文献   


17.
The one-electron transfer reaction from reduced flavocytochrome b2 (fully reduced by three electron equivalents) to ferricytochrome c, both purified from the yeast Hansenula anomala, has been studied using stopped-flow spectrophotometry in the course of a single turnover, for reactants initially mixed in a heme molar ratio equal to one. The cytochrome c reduction proceeded to completion through an apparently first-order process. Depending on the experimental conditions (concentrations and or ionic strength), the reduction is of second-order or first-order character. To interpret these kinetic results computer simulation studies have been performed based on a kinetic scheme involving, besides the formation of a complex before the electron transfer step, intramolecular electron transfer steps within flavocytochrome b2 to maintain the concentration of the specific electron donor center, the reduced cytochrome b2. As far as the cytochrome c reduction rate constant, ka, and its variations were concerned the simulated data showed that this complicated scheme could approximate a mechanism which is by far the simplest, involving only the two former steps. Such a scheme accounts firstly for the hyperbolic dependence of the rate of reduction of cytochrome c, ka, upon reductant concentrations which had provided clear evidence for the kinetic existence of a complex in the reaction pathway. At 5 degrees C the rate constant for the electron transfer is 380 s-1 with an activation energy of 13.8kJ mol-1 (3.3 kcal mol-1). Secondly it predicts the observed variations of ka with ionic strength and provides estimates of the rate constants of the binding step.  相似文献   

18.
The control of electron flux through cytochrome oxidase.   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The electron flux through cytochrome oxidase is a linear function of the net thermodynamic force across the complex over a limited range of conditions. 2. Over a wide range of conditions the electron flux is a complicated function of the percentage reduction of the cytochrome c pool and of delta psi (at low values of delta pH). 3. We have estimated the elasticities of electron flux through cytochrome oxidase to delta Eh of the redox reaction catalysed by cytochrome oxidase (or to cyt c2+/cyt c3+) and to delta psi. The elasticities varied depending on the values of delta psi and of the percentage reduction of the cytochrome c pool. 4. At intermediate rates (which may correspond to those in vivo) the electron flux through cytochrome oxidase is controlled to about the same extent by delta psi and by delta Eh.  相似文献   

19.
The reduction levels of cytochrome c and a(1) in intact Nitrobacter cells and cell-free extracts, during and after nitrite or formate oxidation, were examined in combination with the amperometric measurement of oxygen uptake. Quite different reduction patterns were observed when comparing nitrite oxidation by intact cells and cell-free extracts. An inverse relationship was observed between the rate of electron flow and the steady-state reduction level of cytochrome a(1). Parallel observations on nitrite oxidation, by use of formate and reduced nicotinamide adenine dinucleotide as electron donors, showed the influence of the high oxidation-reduction potential of the nitrite-nitrate system on cytochrome reduction. A value for the apparent activation energy of the overall nitrite oxidation process, amounting to 15 kcal, was found in a study of the temperature dependence of cytochrome reduction.  相似文献   

20.
We have investigated the organisation of the photosynthetic apparatus in Phaeospirillum molischianum, using biochemical fractionation and functional kinetic measurements. We show that only a fraction of the ATP-synthase is present in the membrane regions which contain most of the photosynthetic apparatus and that, despite its complicated stacked structure, the intracytoplasmic membrane delimits a single connected space. We find that the diffusion time required for a quinol released by the reaction centre to reach a cytochrome bc1 complex is about 260 ms. On the other hand, the reduction of the cytochrome c chain by the cytochrome bc1 complex in the presence of a reduced quinone pool occurs with a time constant of about 5 ms. The overall turnover time of the cyclic electron transfer is about 25 ms in vivo under steady-state illumination. The sluggishness of the quinone shuttle appears to be compensated, at least in part, by the size of the quinone pool. Together, our results show that P. molischianum contains a photosynthetic system, with a very different organisation from that found in Rhodobacter sphaeroides, in which quinone/quinol diffusion between the RC and the cytochrome bc1 is likely to be the rate-limiting factor for cyclic electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号