首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis is made of the current break process in microsecond plasma opening switches and their possible application in high-current generators. Necessary conditions are determined for generating megavolt pulses in the erosion mode of a plasma opening switch with the gap insulated by an external magnetic field. Under these conditions, efficient sharpening of high-power submegampere current pulses can be achieved. The possibility of using plasma opening switches operating at voltages of 5–6 MV to generate X-ray and gamma emission is discussed. The main operating and design parameters of a six-module plasma opening switch with a current pulse amplitude of 3.7 MA and voltage of 4–6 MV for use in the MOL generator, which is the prototype of one of the 24 modules of the projected Baikal multimegajoule generator, are estimated by using the available scalings.  相似文献   

2.
A device based on a pulsed current generator with capacitive energy storage loaded on a plasma focus (PF) chamber is described. The device provides a discharge current amplitude of up to 2 MA in the PF chamber at a stored energy in the capacitor bank of up to 150 kJ. The PF chamber is designed to study hard X-ray (HXR) emission. It has windows for output of HXR emission in the cathode direction, as well as a special insert for output of HXR emission into the anode cavity. A study of operation of the chamber as a part of the setup with the use of various X-ray targets on the anode has been carried out. At a discharge current of 1.5MA, an HXR pulse with an average duration of 16 ns and energy spectrum from 10 to 200 keV, which provides an absorbed dose in the irradiated samples on the order of 1 Sv, is generated in the PF chamber.  相似文献   

3.
Implementing programs for nuclear fusion research and X-ray generation requires the creation of superpower generators based on plasma opening switches (POSs) capable of commutating currents as high as several tens of megaamperes at output voltages of up to 5 MV and higher. The physical mechanisms limiting the POS voltage are investigated. It is shown that, as the generator voltage U g increases, the voltage multiplication factor k = UPOS/Ug (where UPOS is the POS voltage) decreases. An explanation for such a dependence is proposed, and the maximum value of the POS voltage is estimated. A POS design that enables operating in the above current and voltage ranges is considered. The design is based on applying an external magnetic field to the POS interelectrode gap, increasing the initial generator voltage, and decreasing the linear (along the perimeter of the outer electrode) density of the charge passing through the POS during the conduction phase.  相似文献   

4.
A technique for calculating a plasma opening switch in an external magnetic field and its matching to a load the impedance of which increases with time was verified experimentally. The experiments were performed in the RS-20 facility both in the absence of a load and with various inductive loads. The amplitude of the voltage pulse at the input of the plasma opening switch was 0.36–0.84 MV, the current amplitude was 280–320 kA, and the pulse duration was ~2 μs, whereas the corresponding parameters of the output pulse were 0.8–3.2 MV, 0–240 kA, and ~100 ns.  相似文献   

5.
Results are presented from the intermediate stage of work on creating a current generator in a circuit with an inductive energy storage and a semiconductor opening switch made of 40 SDL-800 diodes. A six-diode generator prototype has been created with a current pulse amplitude of ~4.5 kA and a leading edge duration of ~10–20 ns at an inductive load of 30–35 nH. The generator was used to study discharges in capillaries filled with argon or hydrogen. It is shown that, in a 2-mm-diameter capillary, the initial azimuthal asymmetry of a structure arising during the breakdown ceases as the discharge evolves, whereas in a 0.8-mm-diameter capillary, it is retained. Time-resolved spectroscopic studies of the plasma reveal the presence of line emission of highly ionized argon (ArVII and ArVIII) in the hottest phase of the discharge, which indicates that a temperature of 20–40 eV has been achieved.  相似文献   

6.
Results of experiments with double-shell gas-puff liners carried out on a high-current MIG generator (2 MA, 80 ns) are presented. To stabilize the process of liner implosion and increase the efficiency of energy transfer from the generator to the liner plasma, a current return in the form of a multifilar helix was used. The effect of the configuration of the current return on the parameters of the generated pulses of argon and neon K-shell radiation (with photon energies of 3–5 and 0.9–1.5 keV, respectively) and the neutron yield from a deuterium liner were studied.  相似文献   

7.
One of the key problems of the Baikal project, intended to create a superpower pulsed generator for ICF experiments, is that of matching a multimodule plasma opening switch (POS) to a liner load. An intermediate inductance or a separating discharger is proposed to be used as a matching element between the POS and the load. An analysis is made of the effect of both versions of the matching system on the synchronization of the POS modules and the energy transfer from the inductive storage to the load. Methods for optimizing the matching element are examined. It is shown that the POS modules can be synchronized and the inductive storage energy can be efficiently transferred to a low-impedance load. A multigap vacuum discharger with a point anode and plane cathode is to be used as a separating discharger. Such an electrode system make it possible to concentrate the electric field at the point anode and to substantially enhance the electric strength of the inter-electrode gap. Results are presented from experimental studies of vacuum breakdown in such an electrode system with a gap length of about 1 mm.  相似文献   

8.
The influence of an external magnetic field on the performance of a high-impedance plasma opening switch is studied experimentally. A 1.5-fold increase in the output voltage of a plasma opening switch operating in the erosion mode is achieved by applying an external magnetic field. The magnetic field strength and the parameters of the plasma opening switch at which the maximum output voltage is attained are determined. It is shown experimentally that the predicted dependence of the maximum output voltage on the Marx generator voltage, U POS [MV]=3.6 (U MG [MV])4/7, is confirmed experimentally.  相似文献   

9.
A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.  相似文献   

10.
A method for the laser probing of an imploding plasma in the S-300 high-current generator (I=4 MA, Z=0.15 Ω, and τ=100 ns) with the use of a YAG: Nd laser is described. The first version of the method enables obtaining three-frame shadow and schlieren photographs of the plasma of the accelerator load with an exposure of 10 ns and an interval between frames of 25 ns. The second version enables the five-frame probing of the plasma with an exposure of 1 ns and an interval between frames of 10 ns. Stimulated Brillouin scattering in carbon tetrachloride is used to compress the probing laser pulse. A series of shadow and schlieren photographs of the plasma of different liners and Z-pinches are obtained. Mechanisms for the image formation are discussed. The magnitude and gradients of the plasma density are estimated.  相似文献   

11.
Results are presented from experimental studies of a section of a magnetically insulated transmission line (MITL) with a current density of up to 500 MA/cm2 and linear current density of up to 7 MA/cm (the parameters close to those in a fast-Z-pinch-driven fusion reactor projected at Sandia Laboratories). The experiments were performed in the S-300 facility (3 MA, 0.15 Ω, 100 ns). At high linear current densities, the surface of the ohmically heated MITL electrode can explode and a plasma layer can form near the electrode surface. As a result, the MITL can lose its transmission properties due to the shunting of the vacuum gap by the plasma produced. In this series of experiments, the dynamics of the electrode plasma and the dependence of the transmission properties of the MITL on the material and cleanness of the electrode surface were studied. It is shown experimentally that, when the current with a linear density of up to 7 MA/cm begins to flow along a model MITL, the input and output currents differ by less than 10% over a time interval of up to 230 ns for nickel electrodes and up to 350 ns for a line with a gold central electrode. No effect of the oil film present on the electrode surface on the loss of the transmission properties of the line was observed. It is also shown that electron losses insignificantly contribute to the total current balance. The experimental results are compared with calculations of the electrode explosion and the subsequent expansion of the plasma layer. A conclusion is made that the life-time of the model MITL satisfies the requirements imposed on the transmission lines intended for use in the projected thermonuclear reactor.  相似文献   

12.
Entrainment of output action potentials from repetitively firing pacemaker cells, brought about by regularly spaced excitatory or inhibitory postsynaptic inputs, is a well-known phenomenon. Synchronization of neural firing patterns by extremely low frequency (ELF) external electric fields has also been observed. Whereas current densities of ≈10 A-m−2 are required for direct excitation of otherwise quiescent neural tissue, much lower peak current densities (≈10−2 A-m2) have been reported to entrain spontaneously firing molluscan pacemaker cells. We have developed a neural spike generator circuit model that simulates repetitive spike generation by a space clamped patch (area ≈ 10−7 m2) of excitable membrane subjected to depolarizing current. Picoampere (pA) range variation of DC depolarizing current causes a corresponding smooth variation of neural spike frequency, producing a physiologically realistic stimulus-response (S-R) characteristic. When lower pA range 60 Hz AC current is superposed upon the DC depolarizing current, smooth variation of the S-R characteristic is distorted by subharmonic locking of the spike generator at 30, 20, 15, 12, 10 Hz, and higher order subharmonic frequencies. Although the additional superposition of a physiologically realistic level of “white” current noise, covering the bandwidth 4–200 Hz, suffices to obscure higher order subharmonic locking, locking at 30, 20, and 15 Hz is still clearly evident in the presence of noise. Subharmonic locking is observed at a root mean square AC simulated tissue current density of ≈10−5 A-m−2. Bioelectromagnetics 19:92–97, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Results are presented from experiments on the electromagnetic implosion of aluminum foil liners at the MIG generator with a current rise time of ≈80 ns. Plasma with a density of 1017 cm–3 was preliminarily injected into the liner region by using a set of radial plasma guns. The Lorentz force J × B causes plasma acceleration in the radial direction. Since the magnetic field pressure is inversely proportional to the radius squared, the plasma displacement is maximum near the liner surface. As a result, plasma motion becomes two-dimensional, a gap appears between the plasma and the liner, and the generator current is switched over to the liner. The plasma velocity at the liner surface is close to the local Alfvén velocity, while the time during which the current is switched over to the liner is nearly equal to the ratio of the liner length to the Alfvén velocity. The proposed scheme allows one to decrease the rise time of the current through the liner to several nano-seconds and, as a result, to reduce the initial liner radius and improve the stability of liner implosion.  相似文献   

14.
An efficient perovskite photovoltaic‐thermoelectric hybrid device is demonstrated by integrating the hole‐conductor‐free perovskite solar cell based on TiO2/ZrO2/carbon structure and the thermoelectric generator. The whole solar spectrum of AM 1.5 G is fully utilized with the ≈1.55 eV band gap perovskite (5‐AVA)x(MA)1?xPbI3 absorbing the visible light and the carbon back contact absorbing the infrared light. The added thermoelectric generator improves the device performance by converting the thermal energy into electricity via the Seebeck effect. An optimized hybrid device is obtained with a maximum point power output of 20.3% and open‐circuit voltage of 1.29 V under the irradiation of 100 mW cm?2.  相似文献   

15.
Experiments on the generation of K-shell radiation in a double-shell neon liner with a microsecond current generator (τ≈1 μs, I max=380 kA) are described. The yield of neon K-shell radiation attains 50–80 J per pulse. For the given current amplitude, such a radiation yield could be expected at a rise time as low as τ≈100 ns. Such a high radiation efficiency may be attributed to the sharpening of the front of the inner-shell current pulse because of the detachment of the outer shell from the electrode. __________ Translated from Fizika Plazmy, Vol. 27, No. 11, 2001, pp. 1003–1008. Original Russian Text Copyright ? 2001 by Chaikovsky, Sorokin.  相似文献   

16.
Results are presented from experimental studies of the parameters of an X-pinch-based neutron source made of 70- to 80-μm-diameter deuterated polyethylene fibers. At currents of up to 1.7 MA and a current rise time of ~150 ns, hot plasma spots were observed in the fiber crossing region. The formation of hot spots was accompanied by the generation of short soft X-ray pulses with a duration of 2–4 ns, as well as by neutron emission. The neutron energy was measured using the time-of-flight technique in four directions, at 0°, 90°, 180°, and 270° with respect to the load axis. The mean energy of the neutrons emitted along the axis towards the anode and cathode was found to be 2.0 ± 0.2 and 2.6 ± 0.1 MeV, respectively, and that of neutrons emitted in two opposite directions along the radius, 2.5 ± 0.1 and 2.4 ± 0.1 MeV. The maximum neutron yield at a current amplitude of 1.6 MA was of 1010 neutrons per shot.  相似文献   

17.
Increased sympathetic nervous activity (SNA) elevates venomotor tone in deoxycorticosterone acetate (DOCA)-salt hypertension. We studied the mechanisms by which the SNA increases venomotor tone in DOCA-salt hypertension by making in situ intracellular recordings of venous smooth muscle cell (VSMC) membrane potential (E(m)) and measurement of outside diameter (OD) in mesenteric veins (MV) and mesenteric arteries (MA) of anesthetized rats. We also studied norepinephrine (NE)- and endothelin-1 (ET-1)-induced increases in MA or MV perfusion pressure (PP) in vitro. E(m) in DOCA-salt MV was depolarized compared with sham MV. Prazosin hyperpolarized VSMC E(m) in DOCA-salt but not in sham MV. NE concentration-response curves (CRCs) for OD decreases in MV from DOCA-salt rats were left-shifted with an increased maximum response (E(max)) compared with sham MV. NE CRCs for OD decreases in MA were right-shifted with reduced E(max) in DOCA-salt compared with sham rats. ET-1 CRCs were similar in DOCA-salt and sham MV but were right-shifted with reduced E(max) in DOCA-salt MA. NE CRCs for MAPP increases were left-shifted without a change in E(max) in DOCA-salt rats. NE did not change MVPP. MAPP and MVPP for ET-1 CRCs were similar in sham and DOCA-salt rats, but E(max) for MAPP was reduced in DOCA-salt rats. Hematoxylin staining revealed hypertrophy in DOCA-salt MA but not in MV. We conclude that there is increased reactivity to NE released from the sympathetic nervous system in DOCA-salt MV that causes VSMC depolarization and increased venomotor tone. In DOCA-salt rats, in vivo ET-1 reactivity is maintained in MV, but reduced in MA.  相似文献   

18.
Experiments are reported on the implosion of structured loads with outer argon, krypton, and xenon gas puffs and an inner tungsten multiwire array. Experiments were carried out in the GIT-12 generator with a current of 2.6 MA and a current rise time of 270 ns. It is shown that the current successfully switches to the wire array only when the gas puff is sufficiently light. The total implosion time is 300 ns, and the implosion time of a wire array, determined from streak camera images, is 50–70 ns. It is suggested that the switching is efficient only when the active impedance of the gas puff is higher than the transitional resistance of the electrically exploded wires.  相似文献   

19.
Results are presented from experimental studies of promising output units for high-current pulsed generators within the framework of the program on inertial confinement fusion research with the use of fast Z-pinches. The experiments were carried out on the S-300 facility (4 MA, 70 ns, 0.15 Ω). Specifically, sharpening systems similar to plasma flow switches but operating in a nanosecond range were investigated. Switching rates to a load as high as 2.5 MA per 2.5 ns, stable switching of a 750-kA current to a low-size Z-pinch, and the radiative temperature of the load cavity wall of up to 50 eV were achieved.  相似文献   

20.
A series of experiments was carried out in the S-300 facility (3 MA, 0.15 Θ, 100 ns) to study the behavior of a section of a magnetically insulated transmission line (MITL) at current densities of up to 500 MA/cm2 and linear current densities of up to 6 MA/cm (i.e., at parameters close to those expected in a fast Z-pinch fusion reactor projected in Sandia National Laboratories). The surface explosion of the ohmically heated MITL electrode is accompanied by the formation of a plasma layer on its surface. This can deteriorate of the transmission properties of the line because the vacuum gap is short-circuited by the plasma produced. The parameters of the electrode plasma and its effect on the MITL transmission properties were investigated experimentally. Possible consequences of the above effects are evaluated, and MHD simulations of the electrode explosion and the subsequent spread of the plasma layer are performed. It is shown that the time during which an MITL segment preserves its transmission properties conforms to the requirements of the conceptual fusion reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号