首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
L-Valyl-L-lysine hydrochloride, C11N3O3H23 HCl, crystallizes in the monoclinic space group P2(1) with a = 5.438(5), b = 14.188(5), c = 9.521(5) A, beta = 95.38(2) degrees and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two gamma-carbons of the valine side-chain have positional disorder, giving rise to two conformations, chi 1(11) = -67.3 and 65.9 degrees, one of which (65.9 degrees) is sterically less favourable and has been found to be less popular amongst residues branching at beta-C. The lysine side-chain has the geometry of g- tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, chi 2(3) (63.6 degrees) of lysine side-chain has a gauche+ conformation unlike in most of the other structures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of L-Lys-L-Val HCl in conformational angles and H-bond interactions [4].  相似文献   

3.
Sym-homospermidine, [formula; see text] is a naturally occurring rare-polyamine found in relatively large concentration in sandal leaves. As part of our studies on structure and interactions of polyamines, sym-homospermidine was purified from sandal leaves and its structure was determined by single crystal X-ray diffraction technique. The phosphate salt of the molecule crystallized in the triclinic space group P1- with a = 8.246(1)A, b = 8.775(1)A, c = 15.531(2)A, alpha = 74.20(1) degrees, beta = 88.36(1) degrees and gamma = 65.41(1) degrees. The structure was determined by direct methods and refined to a final R factor of 5.4% for 2087 reflections with magnitude of F(obs) greater than 5 sigma [F(obs)]. The amine exists in its most favourable all trans conformation. For each amine molecule three phosphate groups exist in the crystal structure, suggesting that two of the oxygens of each phosphate group are protonated. There is also a single water molecule in the asymmetric unit in contrast to that of spermidine phosphate which has 3 water molecules. These differences probably reflect the hydrogen bonding properties of mono-ionic and di-ionic phosphate groups. The structure is predominantly stabilized by a network of hydrogen bonds.  相似文献   

4.
β-Cyclodextrin (cyclohepta-amylose, β-CD) is a torus-shaped, cyclic heptasaccharide consisting of (1→4)-linked α-d-glucopyranosyl residues. It is able to form inclusion complexes with small molecules in aqueous solution because of its annular aperture (width, 6.2 Å). β-Cyclodextrin dodecahydrate, the “empty” β-CD, crystallises from water in space group P21, with cell constants a = 21.29(2), b = 10.33(1), c = 15.10(2) Å, and β = 112.3(5)°. A total of 5189 X-ray counter-data were collected on a four-circle diffractometer. The crystal structure was solved on the basis of the highly isomorphous β-CD · 2HI · 8H2O adduct, and the atomic parameters were refined by the full matrix, least-squares method to R = 7.3% for all data. The crystal structure belongs to the cage type. The β-CD macrocycle exists in an open, circular conformation stabilised by intramolecular hydrogen-bonds between HO-2 and HO-3 of adjacent glucosyl residues; four of the seven HO-6 groups are in the favoured (?)gauche orientation with respect to O-5, two are in the (+)gauche orientation, and one is disordered over these two orientations. The 6.5 water molecules within the cavity are distributed over 8 sites and display extensive thermal motion which is probably correlated with statistical disorder.  相似文献   

5.
The conformation and crystalline packing of V-anhydrous amylose has been investigated by a combination of linked atom model building and X-ray diffraction analysis. The unit cell, the P212121 space group, the left-handed sixfold helical conformation with all O(6) in gt rotational positions, and the intrahelical O(2)---O(3) and O(2)---O(6) hydrogen bonds are substantially in agreement with previous studies. A new model for packing of the chains in the unit cell and the presence of crystallographic water is proposed. Packing appears to be stabilized by corner-to-center chain O(2)---O(2) hydrogen bonds. The nature of the transition from the amylose–DMSO complex to Va-amylose was considered and it is shown that the transition involves translation of the amylose chains parallel to the a and b unit cell axes with only slight changes in the orientation of the helix. No significant conformational changes result from the transition.  相似文献   

6.
The cyclic hexadepsipeptide mycotoxin Destruxin B, produced by Metarrhizium anisopliae, crystallizes in the orthorhombic space group P212121, with a = 11.010(2)A, b = 14.679(5)A, c = 21.273(7)A and Z = 4. The structure was solved by direct methods and refined by least-squares technique to a final unweighted R value of 0.051, for 3361 reflections with I greater than 3 sigma (I). The backbone of the peptide is asymmetric and is made of 5 trans peptide and ester units and 1 cis peptide unit. The backbone conformation of this cyclic depsipeptide is very similar to that of Roseotoxin B, an analogous mycotoxin produced by Trichothecium roseum. The conformation in the crystalline state also correlates well with the solution conformation, as reported from proton n.m.r. studies. The crystal packing is directed by van der Waals contacts.  相似文献   

7.
The dehydropeptide Ac-delta Phe-L-Val-delta Phe-NH-Me, containing two dehydrophenylalanine (delta Phe) residues, crystallizes from methanol/water in space group P212121, with a = 12.622 (1), b = 12.979 (1), and c = 15.733 (1) A. In the solid state, the molecular structure is characterized by the presence of two intramolecular hydrogen bonds which form two consecutive beta-bends. The (phi, psi) torsion angles of the three residues are very similar and close to the standard values of type III beta-bends, so the molecular conformation corresponds to an incipient right-handed 3(10)-helix, only slightly distorted. In the crystal, the molecules are linked by head-to-tail hydrogen bonds, thus forming continuous helical columns packed in antiparallel mode. There are no lateral hydrogen bonds; the only interactions are hydrophobic contacts between the apolar side chains of neighboring helical columns.  相似文献   

8.
9.
The crystal and molecular structure of a synthetic mannosyl disaccharide, methyl O-alpha-D-mannopyranosyl-(1----2)-alpha-D-mannopyranoside, has been determined from X-ray diffractometer data by direct methods by use of the Multan programs. The crystals are monoclinic, space group P2 with unit cell dimensions, a 8.086(1), b 9.775(1), c 9.975(2) A, beta 104.58(1) degrees, Z 2, and Dm 1.54 g/cm3. The structure was refined to an R-value of 0.033 for 1359 reflections measured with CuK alpha radiation. The mannopyranose units have the chair conformations 4C(D) with C-5' and C-2' deviating from the best plane through the other four atoms of the ring by -0.68 and +0.53 A in the nonreducing group, and C-3 and O-5 deviating from the mean plane through the other four atoms by +0.57 and -0.66 A, respectively, in the "potentially" reducing residue. The ring-to-ring conformation can be described as (phi, psi) = (-64.5, 105.5 degrees). The conformation across the C-5--C-6 bond is gauche-gauche in both the sugars. The crystal structure is stabilized by a network of intermolecular O-H...O hydrogen bonds.  相似文献   

10.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

11.
The dehydropeptide Ac-delta Phe-L-Ala-delta Phe-NH-Me, containing two dehydro-phenylalanine (delta Phe) residues, crystallizes from methanol/water in space group P2(1)2(1)2(1), with a = 12.508 (2), b = 12.746 (1) and c = 15.465 (9). In the crystalline state, the peptide chain assumes a right-handed 3(10)-helical conformation stabilized by two intramolecular hydrogen bonds, between the N-terminal acetyl group and the NH of delta Phe3, and between the CO of delta Phe1 and the NH of the C-terminal methylamide group, respectively. The two consecutive 10-membered rings formed by the hydrogen bonds have torsion angles quite close to the standard values for type III beta-bends. delta Phe1 is located in the (i + 1) position of the first beta-bend, while delta Phe2 is located in the (i + 2) position of the other beta-bend. In the crystal, the molecules are linked head to tail by intermolecular hydrogen bonds to form long helical chains. The axes of the helices are parallel to the c axis, but neighboring helices run in antiparallel directions. This crystal packing is similar to the packing motifs frequently observed in Aib-containing peptides.  相似文献   

12.
The crystal structure of an active 4-oximino-5-imino-pyrazoline ester has been determined by single-crystal X-ray diffraction methods. The possible reasons for its high reactivity towards nucleophilic reagents are briefly discussed.  相似文献   

13.
Crystals of N-formyl-L-methionyl-L-phenylalanine (C15H20N2O4S), grown from aqueous methanol solution are orthorhombic, space group, P2(1)2(1)2(1), with cell parameters at 294K of a = 4.900(2), b = 17.947(4), c = 18.726(4)A, V = 1646.8A3, M.W. = 324.4, Z = 4 and Dm = 1.308 g/cc, and as expected, all nearly identical to that of N-f-D-Met-D-Phe studied by Jeffs, Heald, Chodosh & Eggleston (Int. J. Peptide Protein Res. 24, 442-446, 1984). The crystal structure was solved and refined using CAD-4 data (1095 reflections greater than or equal to 3 sigma) to a final R value of 0.042. Molecules related by the alpha-translation form a parallel beta-sheet rather than anti-parallel sheet as stated in the earlier study of Jeffs et al. The formation of the parallel rather than the anti-parallel beta-sheet structure, the use of the C-H ...O hydrogen bonds to stabilize the beta-sheet and the very short O-H ...O hydrogen bond between the carboxyl OH and the N-acyl oxygen atom emerge as the main structural features of the chemotactic N-formyl methionyl peptides.  相似文献   

14.
The cellulose model compound methyl 4-O-methyl-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside (6) was synthesised in high overall yield from methyl beta-D-cellobioside. The compound was crystallised from methanol to give colourless prisms, and the crystal structure was determined. The monoclinic space group is P2(1) with Z=2 and unit cell parameters a=6.6060 (13), b=14.074 (3), c=9.3180 (19) A, beta=108.95(3) degrees. The structure was solved by direct methods and refined to R=0.0286 for 2528 reflections. Both glucopyranoses occur in the 4C(1) chair conformation with endocyclic bond angles in the range of standard values. The relative orientation of both units described by the interglycosidic torsional angles [phi (O-5' [bond] C-1' [bond] O-4 [bond] C-4) -89.1 degrees, Phi (C-1' [bond] O-4 [bond] C-4 [bond] C-5) -152.0 degrees] is responsible for the very flat shape of the molecule and is similar to those found in other cellodextrins. Different rotamers at the exocyclic hydroxymethyl group for both units are present. The hydroxymethyl group of the terminal glucose moiety displays a gauche-trans orientation, whereas the side chain of the reducing unit occurs in a gauche-gauche conformation. The solid state (13)C NMR spectrum of compound 6 exhibits all 14 carbon resonances. By using different cross polarisation times, the resonances of the two methyl groups and C-6 carbons can easily be distinguished. Distinct differences of the C-1 and C-4 chemical shifts in the solid and liquid states are found.  相似文献   

15.
Crystal structure of the cytokine interleukin-1 beta.   总被引:7,自引:1,他引:7  
The crystal structure of human recombinant interleukin-1 beta has been determined at 3.0 A resolution by the isomorphous replacement method in conjunction with solvent flattening techniques. The model prior to refinement has a crystallographic R-factor of 42.3%. The structure is composed of 12 beta-strands forming a complex network of hydrogen bonds. The core of the structure can best be described as a tetrahedron whose edges are each formed by two antiparallel beta-strands. The interior of this structure is filled with hydrophobic side chains. There is a 3-fold repeat in the folding of the polypeptide chain. Although this folding pattern suggests gene triplication, no strong internal sequence homology between topologically corresponding residues exists. The folding topology of interleukin-1 beta is very similar to that described by McLachlan (1979) J. Mol. Biol., 133, 557-563, for soybean trypsin inhibitor.  相似文献   

16.
T P Singh  P Narula  V S Chauhan  P Kaur 《Biopolymers》1989,28(7):1287-1294
The peptide N-Boc-L-Gly-dehydro-Phe-NHCH3 was synthesized by the combination of N-Boc-L-Gly-dehydro-Phe azlactone and methylamine. The peptide crystallizes in orthorhombic space group P2(1)2(1)2(1) with a = 5.679(2) A, b = 16.423(9) A, c = 19.198(10) A, V = 1791(2) A3, Z = 4, dm = 1.212(5) Mg m-3, dc = 1.237(1) Mg m-3. The structure was determined by direct methods using SHELXS 86. The structure was refined by full-matrix least squares procedure to an R value of 0.049 for 1509 observed reflections. The molecular dimensions are, in general, in good agreement with the standard values. The bond angle C alpha-C beta-C gamma in the dehydro-Phe residue is 133.6(5) degrees. The peptide backbone torsion angles are theta 1 = -171.4(4) degrees, omega 0 = 178.2(4) degrees, phi 1 = -57.2(6) degrees, psi 1 = 141.2(4) degrees, omega 1 = -174.4(4) degrees, phi 2 = 71.5(6) degrees, psi 2 = 7.2(6) degrees, and omega 2 = -179.8(5) degrees. These values show that the backbone adopts the beta-bend type II conformation. The Boc group has a trans-trans conformation. The side-chain torsion angles in dehydro-Phe are chi 2 = 1.6(9) degrees, chi 2(2, 1) = 0.5(9) degrees, and chi 2(2, 2) = 179.8(6) degrees. The plane of C2 alpha-C2 beta-C2 gamma is rotated with respect to the plane of the phenyl ring at 0.5(6) degrees, which indicates that the atoms of the side chain of the dehydro-Phe residue are essentially coplanar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Methyl 4-O-methyl-beta-D-ribo-hex-3-ulopyranoside (2), a model compound for partially oxidized anhydroglucose units in cellulose, was crystallized from CHCl(3)/n-hexane by vapor diffusion to give colorless plates. Crystal structure determination revealed the monoclinic space group P2(1) with Z = 2C(8)H(14)O(6) and unit cell parameters of a = 8.404(2), b = 4.5716(10), c = 13.916(3)A, and beta = 107.467(4) degrees. The structure was solved by direct methods and refined to R = 0.0476 for 1655 reflections and 135 parameters. The hexulopyranoside occurs in a distorted chair conformation. Both hydroxyls are involved in hydrogen bonding and form zigzag bond chains along the b-axis. One of the two hydrogen bonds is bifurcated. The solid-state (13)C NMR spectrum of exhibits eight carbon resonances, with well-separated signals for the two methoxyls (1-OMe: 55.72 ppm, 4-OMe: 61.25 ppm) and a keto resonance with relatively large downfield shift (206.90 ppm). Differences in the C-4 and the methoxyls' chemical shifts in the solid and liquid states were found.  相似文献   

18.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

19.
ClpX, a heat shock protein 100 chaperone, which acts as the regulatory subunit of the ATP-dependent ClpXP protease, is responsible for intracellular protein remodeling and degradation. To provide a structural basis for a better understanding of the function of the Clp ATPase family, the crystal structures of Helicobacter pylori ClpX, lacking an N-terminal Cys cluster region complexed with ADP, was determined. The overall structure of ClpX is similar to that of heat shock locus U (HslU), consisting of two subdomains, with ADP bound at the subdomain interface. The crystal structure of ClpX reveals that a conserved tripeptide (LGF) is located on the tip of ClpP binding loop extending from the N-terminal subdomain. A hexameric model of ClpX suggests that six tripeptides make hydrophobic contacts with the hydrophobic clefts of the ClpP heptmer asymmetrically. In addition, the nucleotide binding environment provides the structural explanation for the hexameric assembly and the modulation of ATPase activity.  相似文献   

20.
Lincomycin is a broad-spectrum antibiotic synthesized by Streptomyces lincolnensis that is particularly active against Gram-positive bacteria. It is widely used in human and veterinary applications. The crystal structure of lincomycin has been undertaken with a view to obtain the conformational and structural features of the drug in order to afford a comparison of its structural features with other aminoglycoside antibiotics. We report here the details of its structural and conformational features as determined by single-crystal X-ray crystallography. Crystals of lincomycin hydrochloride are orthorhombic, space group P2(1)2(1)2, with the cell dimensions a=18.5294(3) Angstroms, b=20.5980(4) Angstroms, c=6.17380(10) Angstroms, V=2356.35(7) Angstroms3. The structure was solved using X-ray diffraction data and refined to a final R-value of 0.0391 for 2321 reflections (I > or = 2sigma). The absolute configuration was established using the anomalous dispersion of the sulfur and chlorine atoms in the structure. The molecule consists of an amino acid linked by an amide group to a monosaccharide of galactose stereochemistry. A network of hydrogen-bonds stabilizes the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号