首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When mannose was added to a sucrose-supported culture of Azotobacter vinelandii under N2-fixing conditions, cell growth was inhibited. The degree of inhibition was proportional to the amount of mannose and to the aeration rate (T.-Y. Wong, Appl. Environ. Microbiol. 54:473-475, 1988). In this report, we demonstrate that once inside the cell, mannose was phosphorylated to mannose 6-phosphate. It was then isomerized to fructose 6-phosphate and to glucose 6-phosphate. Mannose inhibited sucrose uptake noncompetitively. The decrease in sucrose uptake after mannose addition coincided with a lower rate of respiration and a decrease in nitrogenase activity. The decrease in sucrose uptake and in the ATP pool may decrease the electron flow and reduce protection of the nitrogenase from O2. Cells became very sensitive to O2, and therefore, cell growth was inhibited under high aeration conditions.  相似文献   

2.
When mannose was added to a sucrose-supported culture of Azotobacter vinelandii under N2-fixing conditions, cell growth was inhibited. The degree of inhibition was proportional to the amount of mannose and to the aeration rate (T.-Y. Wong, Appl. Environ. Microbiol. 54:473-475, 1988). In this report, we demonstrate that once inside the cell, mannose was phosphorylated to mannose 6-phosphate. It was then isomerized to fructose 6-phosphate and to glucose 6-phosphate. Mannose inhibited sucrose uptake noncompetitively. The decrease in sucrose uptake after mannose addition coincided with a lower rate of respiration and a decrease in nitrogenase activity. The decrease in sucrose uptake and in the ATP pool may decrease the electron flow and reduce protection of the nitrogenase from O2. Cells became very sensitive to O2, and therefore, cell growth was inhibited under high aeration conditions.  相似文献   

3.
The hypothesis of respiratory protection, originally formulated on the basis of results obtained with Azotobacter species, postulates that consumption of O(2) at the surface of diazotrophic prokaryotes protects nitrogenase from inactivation by O(2). Accordingly, it is assumed that, at increased ambient O(2) concentrations, nitrogenase activity depends on increased activities of a largely uncoupled respiratory electron transport system. The present review compiles evidence indicating that cellular O(2) consumption as well as both the activity and the formation of the respiratory system of Azotobacter vinelandii are controlled by the C/N ratio, that is to say the ratio at which the organism consumes the substrate (i.e. the source of carbon, reducing equivalents and ATP) per source of compound nitrogen. The maximal respiratory capacity which can be attained at increased C/N ratios, however, is controlled, within limits, by the ambient O(2) concentration. When growth becomes N-limited at increased C/N ratios, cells synthesize nitrogenase and fix N(2). Under these diazotrophic conditions, cellular O(2) consumption remains constant at a level controlled by the O(2) concentration. Control by O(2) has been studied on the basis of both whole cell respiration and defined segments of the respiratory electron transport chain. The results demonstrate that the effect of O(2) on the respiratory system is restricted to the lower range of O(2) concentrations up to about 70 microM. Nevertheless, azotobacters are able to grow diazotrophically at dissolved O(2) concentrations of up to about 230 microM indicating that respiratory protection is not warranted at increased ambient O(2) concentrations. This conclusion is supported and extended by a number of results largely excluding an obvious relationship between nitrogenase activity and the actual rate of cellular O(2) consumption. On the basis of theoretical calculations, it is assumed that the rate of O(2) diffusion into the cells is not significantly affected by respiration. All of these results lead to the conclusion that, in the protection of nitrogenase from O(2) damage, O(2) consumption at the cell surface is less effective than generally assumed. It is proposed that alternative factors like the supply of ATP and reducing equivalents are more important.  相似文献   

4.
J. Liu  F. Lee  C. Lin  X. Yao  J. W. Davenport    T. Wong 《Applied microbiology》1995,61(11):3998-4003
The N(inf2)-fixing bacterium Azotobacter vinelandii was grown in an O(inf2)-regulated chemostat with glucose or galactose as substrate. Increasing the O(inf2) partial pressure resulted in identical synthesis of the noncoupled cytochrome d terminal oxidase, which is consistent with the hypothesis that A. vinelandii uses high rates of respiration to protect the nitrogenase from oxygen. However, cell growth on glucose showed a lower yield of biomass, higher glycolytic rate, higher respiratory rate, and lower cytochrome o content than cell growth on galactose. Elemental analysis indicated no appreciable change in the C-to-N ratio of cell cultures, suggesting that the major composition of the cell was not influenced by the carbon source. A poor coordination of glucose and nitrogen metabolisms in A. vinelandii was suggested. The rapid hydrolysis of glucose resulted in carbonaceous accumulation in cells. Thus, Azotobacter species must induce a futile electron transport to protect cells from the high rates of glucose uptake and glycolysis.  相似文献   

5.
Nitrogenase activity of washed Azotobacter vinelandii cells was enhanced by the addition of Ca2+ and Mg2+, and the enhancement increased with the O2 concentration. In assays provided with a level of O2 that was initially supraoptimal and inhibitory to nitrogenase activity, the addition of Ca2+ or Mg2+ affected both the maximum respiration rate (Vmax) of the cells and the apparent affinity [KS(O2)] of cell respiration for O2. Changes in these parameters correlated with changes in nitrogenase activity. Aeration-dependent increases in Vmax and KS(O2) were inhibited by rifampin and chloramphenicol and were also observed in ammonium-grown cultures.  相似文献   

6.
In Azotobacter vinelandii cells, the short-term inhibition of nitrogenase activity by NH4Cl was found to depend on several factors. The first factor is the dissolved oxygen concentration during the assay of nitrogenase. When cells are incubated with low concentrations of oxygen, nitrogenase activity is low and ammonia inhibits strongly. With more oxygen, nitrogenase activity increases. Cells incubated with an optimum amount of oxygen have maximum nitrogenase activity, and the extent of inhibition by ammonia is small. With higher amounts of oxygen, the nitrogenase activity of the cells is decreased and strongly inhibited by ammonia. The second factor found to be important for the inhibition of nitrogenase activity by NH4Cl was the pH of the medium. At a low pH, NH4+ inhibits more strongly than at a higher pH. The third factor that influenced the extent of ammonia inhibition was the respiration rate of the cells. When cells are grown with excess oxygen, the respiration rate of the cells is high and inhibition of nitrogenase activity by ammonia is small. Cells grown under oxygen-limited conditions have a low respiration rate and NH4Cl inhibition of nitrogenase activity is strong. Our results explain the contradictory reports described in the literature for the NH4Cl inhibition of nitrogenase in A. vinelandii.  相似文献   

7.
The in vivo activity of nitrogenase under aerobiosis was studied with diazotrophic chemostat cultures of Azotobacter vinelandii grown under glucose- or phosphate-limited conditions at different dilution rates (Ds, representing the growth rate mu) and different dissolved oxygen concentrations. Under steady-state conditions, the concentration as well as the cellular level of ATP increased in glucose-limited cultures when D was increased. Irrespective of the type of growth limitation or the dissolved oxygen concentration, the steady-state concentrations of ATP and of dinitrogen fixed by nitrogenase increased in direct proportion to each other. Specific rates of dinitrogen fixation as well as of the regeneration of the cellular ATP pool were compared with specific rates of cellular respiration. With glucose-limited cultures, the rate of regeneration of the ATP pool and the rate of respiration varied in direct proportion to each other. This relationship, however, was dependent on the dissolved oxygen concentration. As compared to the phosphate-sufficient control, phosphate-limited cultures exhibited the same nitrogenase activity but significantly increased respiratory activities. Rates of ATP regeneration and of cellular respiration of phosphate-limited cultures did not fit into the relationship characteristic of glucose-limited cultures. However, a linear relationship between the rates of dinitrogen fixation and ATP regeneration was identified irrespective of the type of growth limitation and the dissolved oxygen concentration. The results suggest that the ATP supply rather than cellular oxygen consumption is of primary importance in keeping nitrogenase activity in aerobic cultures of A. vinelandii.  相似文献   

8.
The levels of the adenine nucleotides, pyridine nucleotides and the kinetical parameters of the enzymes of the Entner-Doudoroff pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) were determined in Azotobacter vinelandii cells, grown under O2- or N2-limiting conditions. It was concluced that the levels of both the adenine nucleotides and pyridine nucleotides do not limit the rate of sucrose oxidation. Experiments with radioactive pyruvate and sucrose show that the rate of sucrose oxidation of Azotobacter cells is associated with an increase in the rate of sucrose uptake. The sites of oxidative phosphorylation and the composition of the respiratory membranes with respect to cytochromes c4 + c5, b and d differ in cells growth either O2- or N2-limited. It was possible to show that the respiration protection of the nitrogen-fixing system in Azotobacter is mainly independent of the oxidation capacity of the cells. The oxidation capacity intrinsically depends on the type of substrate and can be partly adapted. The maximum activity of the nitrogenase in Azotobacter depends on the type of substrate oxidized. Although the level of energy charge is somewhat dependent on the type of substrate used, no obvious relation can be derived between changes in energy charge and nitrogenase activity. An alternative proposal is given.  相似文献   

9.
Continuous culture studies of Azotobacter vinelandii cells immobilized by ionic adsorption to Cellex E anion exchange resin were conducted under oxygen-limited conditions for comparison to free-cell cultures. Immobilization had little effect upon the specific respiration and sucrose consumption rates as compared to free cells. However, maxima in specific nitrogen fixation rate and nitrogenase activity as a function of dissolved oxygen occurred at a C(O(2) ) value of approximately 0.005 mM as opposed to 0.02 mM for free cells. Further, in contrast to free-cell culture, most of the fixed nitrogen appeared in the medium rather than within intact cells. There were strong indications that reproduction of bound cells often resulted in cell lysis accounting for the fixed nitrogen content in solution.  相似文献   

10.
柱孢鱼腥藻固氮酶防氧的呼吸保护   总被引:1,自引:0,他引:1  
柱孢鱼腥藻生长在缺氮情况下,发现其固氮活性增加的同时也减少了对氧的敏感性。缺氮生长细胞的乙炔还原活性给氧抑制一半时的氧分压(pO_2)是0.5atm.,而有氮生长细胞的半抑制浓度为0.35atm.。这表明蓝藻有可能通过增加呼吸耗氧而提高了它的固氮酶活性。呼吸作用与固氮酶活性之间存在着密切的关系。无论在有氮、缺氮还是光诱导固氮酶形成的情况下,其固氮活性均随着呼吸速率的变化而变化。本研究结果,支持了柱孢鱼腥藻固氮酶的主要防氧手段是呼吸保护的观点。  相似文献   

11.
The activity of nitrogenase in the cells of Azobacter vinelandii grown from lyophilized and non-lyophilized cultures depends on the donor of hydrogen and the concentration of oxygen in the gaseous phase. The lyophilized cells are more sensitive to oxygen (O2 optimum for nitrogen fixation is ca. 1 percent) than the non-lyophilized cells (ca. 5 percent). The determination of acetylene reduction in the course of the culture growth has shown that nitrogen fixation in the lyophilized cells takes place after a lag-period (about six hours) at a rate lower than that of the non-lyophilized cells. The results obtained suggest that lyophilization increases the sensitivity of the cells to oxygen and decreases their nitrogenase activity which is however restored after a while.  相似文献   

12.
In Klebsiella pneumoniae, Mo accumulation appeared to be coregulated with nitrogenase synthesis. O2 and NH+4, which repressed nitrogenase synthesis, also prevented Mo accumulation. In Azotobacter vinelandii, Mo accumulation did not appear to be regulated Mo was accumulated to levels much higher than those seen in K. pneumoniae even when nitrogenase synthesis was repressed. Accumulated Mo was bound mainly to a Mo storage protein, and it could act as a supply for the Mo needed in component I synthesis when extracellular Mo had been exhausted. When A. vinelandii was grown in the presence of WO2-(4) rather than MoO2-(4), it synthesized a W-containing analog of the Mo storage protein. The Mo storage protein was purified from both NH+4 and N2-grown cells of A. vinelandii and found to be a tetramer of two pairs of different subunits binding a minimum of 15 atoms of Mo per tetramer.  相似文献   

13.
Gluconacetobacter diazotrophicus is an N(2)-fixing endophyte isolated from sugarcane. G. diazotrophicus was grown on solid medium at atmospheric partial O(2) pressures (pO(2)) of 10, 20, and 30 kPa for 5 to 6 days. Using a flowthrough gas exchange system, nitrogenase activity and respiration rate were then measured at a range of atmospheric pO(2) (5 to 60 kPa). Nitrogenase activity was measured by H(2) evolution in N(2)-O(2) and in Ar-O(2), and respiration rate was measured by CO(2) evolution in N(2)-O(2). To validate the use of H(2) production as an assay for nitrogenase activity, a non-N(2)-fixing (Nif(-)) mutant of G. diazotrophicus was tested and found to have a low rate of uptake hydrogenase (Hup(+)) activity (0.016 +/- 0.009 micromol of H(2) 10(10) cells(-1) h(-1)) when incubated in an atmosphere enriched in H(2). However, Hup(+) activity was not detectable under the normal assay conditions used in our experiments. G. diazotrophicus fixed nitrogen at all atmospheric pO(2) tested. However, when the assay atmospheric pO(2) was below the level at which the colonies had been grown, nitrogenase activity was decreased. Optimal atmospheric pO(2) for nitrogenase activity was 0 to 20 kPa above the pO(2) at which the bacteria had been grown. As atmospheric pO(2) was increased in 10-kPa steps to the highest levels (40 to 60 kPa), nitrogenase activity decreased in a stepwise manner. Despite the decrease in nitrogenase activity as atmospheric pO(2) was increased, respiration rate increased marginally. A large single-step increase in atmospheric pO(2) from 20 to 60 kPa caused a rapid 84% decrease in nitrogenase activity. However, upon returning to 20 kPa of O(2), 80% of nitrogenase activity was recovered within 10 min, indicating a "switch-off/switch-on" O(2) protection mechanism of nitrogenase activity. Our study demonstrates that colonies of G. diazotrophicus can fix N(2) at a wide range of atmospheric pO(2) and can adapt to maintain nitrogenase activity in response to both long-term and short-term changes in atmospheric pO(2).  相似文献   

14.
 棕色固氮菌固氮酶钼铁蛋白八聚体相当于两个钼铁蛋白四聚体的聚合体。在细胞生长过程中,胞内钼铁蛋白两种聚合体的相对含量出现规律性变化:在对数期,细胞固氮酶比活力成上升趋势,而钼铁蛋白主要以高活力的四聚体形式存在;在对数期结束至稳定期,细胞固氮酶比活力下降至一个低水平的稳定值,此时的钼铁蛋白基本上为八聚体形态。在细胞固氮生长时,向培养基中加入过量氨可明显地导致钼铁蛋白由四聚体向八聚体的转化。我们推断,生长过程中胞内钼铁蛋白聚合态的变化可能是调节固氮酶活力的一种方式。胞外,钼铁蛋白的两种聚合态可以相互转化。  相似文献   

15.
固氮酶CrFe蛋白和MnFe蛋白的空间晶体生长   总被引:3,自引:0,他引:3  
从分别牛长于含Mn和Cr培养基中的棕色固氮菌(Azotobacter vinelandii Lipmann)突变种UW3分离纯化出MnFe和CrFe蛋白。为适应包括固氮酶在内的氧敏感蛋白的空间晶体生长的要求,应用简易而适用的厌氧加样装置代替固氮酶实验室所用的笨重厌氧箱(dry box),在地面进行厌氧加样。在充满氮气的简便有机玻璃箱内厌氧加样的所有样品中,分别用液/液扩散法和汽相扩散的坐滴法都可在一周内使MnFe和CrFe蛋白在宇宙飞船上从溶液中结晶出来。在所用的数种蛋白沉淀剂中,飞船上形成的所有晶体都为单品,而地面上在多数沉淀剂中都生成大量挛晶。在相同沉淀剂中用液/液扩散法,飞船上生成CrFe蛋白的最大晶体比地面生成的最大晶体大1倍。而在相同沉淀剂中用汽相扩散的坐滴法,飞船上生成的MnFe蛋白最大晶体却没有地面生成的最大晶体大。这种差异也许是由不同结晶方法而不是不同蛋白所引起的。  相似文献   

16.
When the exhaustion of sucrose or sulfate or the induction of encystment (by incubation in 0.2% beta-hydroxybutyrate) leads to termination of growth in Azotobacter vinelandii batch cultures, the nitrogenase levels in the organisms decreased rapidly, whereas glutamate synthase and glutamine synthetase levels remained unaltered. Glutamate dehydrogenase activities were low during the whole culture cycle, indicating that ammonia assimilation proceeds via glutamine. Toward depletion of sucrose or during induction of encystment, slight secretion of ammonia with subsequent reabsorption was occasionally observed, whereas massive ammonia excretion occurred when the sulfate became exhausted. The extracellular ammonia levels were paralleled by changes in the glutamine synthetase activity. The inactivation of the nitrogenase is explained as a result of rising oxygen tension, a consequence of a metabolic shift-down (reduced respiration) that occurs in organisms entering the stationary phase.  相似文献   

17.
Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with the use of the probe. However, some factor(s) in addition to O2 must have limited the activity of single nodules at both subsaturating and saturating Oi. At Oi values greater than about 57 nM, nitrogenase activity and nodule respiration were inhibited, but, because this inhibition has been shown previously to be readily reversible when the Oi was lowered, it was not attributed to direct O2 inactivation of the nitrogenase protein. These results indicate that maximum nitrogenase activity in legume nodules is supported by a narrow range of Oi values. Possible biochemical mechanisms are discussed for both O2 limitation of nitrogenase activity at low Oi and inhibition of nitrogenase activity at high Oi.  相似文献   

18.
Alginate is an industrially relevant linear copolymer composed of beta-1,4-linked D-mannuronic acid and its C-5 epimer L-guluronic acid. The rheological and gel-forming properties of alginates depend on the molecular weight and the relative content of the two monomers. Alginate produced by Azotobacter vinelandii was shown to be degraded towards the end of the culture, an undesirable situation in terms of potential alginate applications. A gene ( algL) encoding the alginate lyase activity AlgL is present within the alginate biosynthetic gene cluster of A. vinelandii. We constructed strain SML2, an A. vinelandii strain carrying a non-polar mutation within algL. No alginate lyase activity was detected in SML2. Under 3% dissolved oxygen tension, higher values of maximum mean molecular weight alginate were obtained (1240 kDa) with strain SML2, compared to those from the parental strain ATCC 9046 (680 kDa). These data indicate that AlgL activity causes the drop in the molecular weight of alginate produced by A. vinelandii.  相似文献   

19.
Azotobacter vinelandii was grown diazotrophically at different dissolved oxygen concentrations (in the range of 3 to 216 microM) in sucrose-limited continuous culture. The specific nitrogenase activity, measured on the basis of acetylene reduction in situ, was dependent solely on the growth rate and was largely independent of oxygen and sucrose concentration. FeMo (Av1) and Fe (Av2) nitrogenase proteins were quantified after Western blotting (immunoblotting). When the cultures were grown at a constant dilution rate (D, representing the growth rate, mu) of 0.15.h-1, the cellular levels of both proteins were constant regardless of different dissolved oxygen concentrations. The same was true when the organisms were grown at D values above 0.15.h-1. At a lower growth rate (D = 0.09.h-1), however, and at lower oxygen concentrations cellular levels of both nitrogenase proteins were decreased. This means that catalytic activities of nitrogenase proteins were highest at low oxygen concentrations, but at higher oxygen concentrations they increased with growth rate. Under all conditions tested, however, the Av1:Av2 molar ratio was 1:(1.45 +/- 0.12). Cellular levels of flavodoxin and FeS protein II were largely constant as well. In order to estimate turnover of nitrogenase proteins in the absence of protein synthesis, chloramphenicol was added to cultures adapted to 3 and 216 microM oxygen, respectively. After 2 h of incubation, no significant decrease in the cellular levels of Av1 and Av2 could be observed. This suggests that oxygen has no significant effect on the breakdown of nitrogenase proteins.  相似文献   

20.
The alginate production by Azotobacter vinelandii, as well as the molecular weight of the polymer, are strongly influenced by the dissolved oxygen tension (DOT) and stirring speed of the culture. Under high DOT (5% of air saturation), the bacteria produced more alginate (4.5 g/l) than that obtained at low (0.5%) oxygen tension (1.0 g/l) in cultures conducted at 300 rpm. On the other hand, under constant DOT (3%), the higher the stirring speed (from 300 to 700 rev./min), the higher the specific growth rate and the alginate production rate. However, low agitation speed (300 rev./min) lead the culture to produce a polymer of high molecular weight (680 000 g/g mol) whereas a low molecular weight (352 000 g/g mol) alginate was isolated from cultures conducted at high (700 rev./min) stirring speed. At 700 rev./min, the MMW increased to a plateau between 1 and 3% DOT and then decreased to a minimum of 0.11 x 10(6) g/g mol at 7%. Microscopic observations revealed the presence of cell aggregates (one order of magnitude larger than individual cells) when the culture was conducted at 300 rev./min. Oxygen gradients occurring within the aggregates could be responsible of this phenomenon. At high agitation rate, the MMW of the alginate dropped towards the end of the culture in all conditions evaluated. Alginase activity was detected, which would be responsible for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号