首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase (ATase) is demonstrated in cell extracts of Bacillus subtilis. The rate of inactivation of ATase in vitro is apparently first order with respect to oxygen concentration and ATase activity. ATase inactivation in vitro (or in vivo) cannot be reactivated by a variety of reductants. ATase is significantly stabilized to oxygen-dependent inactivation in vitro in the presence of tetrasodium phosphoribosylpyrophosphate and glutamine together. The effects of the end product inhibitors, adenosine 5-monophosphate (AMP) and guanosine 5-monophosphate (GMP), on the stability of ATase are antagonistic. AMP stabilizes ATase, whereas GMP destabilizes the enzyme. The stability of ATase can be manipulated over wide ranges by variations in the AMP/GM ratio. The effects of AMP and GMP on the inactivation of ATase in vitro are very specific. ATase is partially inhibited by 1,10-phenanthroline, suggesting that the enzyme contains iron (or some other chelatable metal ion). The inactivation of ATase in vitro is proposed to present a model for the reconstruction of the inactivation of ATase in stationary-phase cells of B. subtilis.  相似文献   

2.
The aspartic transcarbamylase (ATCase) activity of Bacillus subtilis cells disappears rapidly from stationary-phase cells prior to sporulation. ATCase activity does not appear in the culture fluid during the stationary phase; hence the enzyme appears to be inactivated in the cells. The enzyme is inactivated normally in two different mutants lacking proteases; the activity is very stable in crude extracts of cells or in the culture fluid. These results suggest that ATCase is not inactivated by the general proteolysis that occurs in sporulating bacteria. The inactivation of ATCase can be completely inhibited after it has begun by oxygen starvation or addition of fluoroacetate. Inhibitors of oxidative phosphorylation and electron transport also interrupt the inactivation of ATCase. The inactivation of ATCase is very slow in two mutant strains that are deficient in enzymes of tricarboxylic acid cycle. Addition of gluconate to stationary cultures of the mutant strains, which is known to restore depleted adenosine 5'-triphosphate pools in these bacteria, also restores inactivation of ATCase. These experiments support the conclusion that the generation of metabolic energy is necessary for the inactivation of ATCase in stationary cells. ATCase activity is stable in growing cells in which ATCase synthesis is repressed by addition of uracil; the enzyme is inactivated normally, however, when such cells cease growing.  相似文献   

3.
Aspartate transcarbamylase is synthesized during exponential growth of Bacillus subtilis and is inactivated when the cells enter the stationary phase. This work is a study of the regulation of aspartate transcarbamylase synthesis during growth and the stationary phase. Using specific immunoprecipitation of aspartate transcarbamylase from extracts of cells pulse-labeled with tritiated leucine, we showed that the synthesis of the enzyme decreased very rapidly at the end of exponential growth and was barely detectable during inactivation of the enzyme. Synthesis of most cell proteins continued during this time. When the cells ceased growing because of pyrimidine starvation of a uracil auxotroph, however, synthesis and inactivation occurred simultaneously. Measurement of pools of pyrimidine nucleotides and guanosine tetra- and pentaphosphate demonstrated that failure to synthesize aspartate transcarbamylase in the stationary phase was not explained by simple repression by these compounds. The cessation of aspartate transcarbamylase synthesis may reflect the shutting off of a "vegetative gene" as part of the program of differential gene expression during sporulation. However, aspartate transcarbamylase synthesis decreased normally at the end of exponential growth at the nonpermissive temperature in a mutant strain that is temperature-sensitive in sporulation and RNA polymerase function. Cessation of aspartate transcarbamylase synthesis appeared to be normal in three other temperature-sensitive RNA polymerase mutants and in several classes of spo0 mutants.  相似文献   

4.
Pyrimidine-repressible carbamyl phosphate synthetase P was synthesized in parallel with aspartate transcarbamylase during growth of Bacillus subtilis on glucose-nutrient broth. Both enzymes were inactivated at the end of exponential growth, but at different rates and by different mechanisms. Unlike the inactivation of aspartate transcarbamylase, the inactivation of carbamyl phosphate synthetase P was not interrupted by deprivation for oxygen or in a tricarboxylic acid cycle mutant. The arginine-repressible isozyme carbamyl phosphate synthetase A was synthesized in parallel with ornithine transcarbamylase during the stationary phase under these growth conditions. Again, both enzymes were subsequently inactivated, but at different rates and by apparently different mechanisms. The inactivation of carbamyl phosphate synthetase A was not affected in a protease-deficient mutatn the inactivation of ornithine transcarbamylase was greatly slowed.  相似文献   

5.
Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.  相似文献   

6.
Replication of the 50 and 58 moles per cent guanine plus cytosine (%GC) components of R factor 222 in Proteus mirabilis during growth in the presence and absence of chloramphenicol and after shifting exponential- and stationary-phase cells to conditions which inhibit host protein or deoxyribonucleic acid (DNA) synthesis was examined. Chloramphenicol reduced the growth rate but increased the amount of both R-factor components; the 58% GC component showed a larger proportionate increase. This was inferred to indicate reduced synthesis of an inhibitor that acts on both R-factor components and an initiator for replication of the 50% GC component. Replicative patterns observed after shifting exponential- and stationary-phase cells grown with or without chloramphenicol to minimal medium or chloramphenicol for one generation, or puromycin for 3 hr, corroborated this interpretation. After shifts of exponential cells from either medium, replication of the 50% GC components paralleled host replication, thus indicating a requirement for protein synthesis; replication of the 58% GC component increased due to reduced inhibitor synthesis. R-factor DNA remained constant after shifting stationary cells from drug-free medium, thus indicating that the cells contained effective concentrations of the regulatory inhibitor, whereas increased replication of the 58% GC component occurred after identical shifts of chloramphenicol-grown cells of the same chronological age. Similar responses were observed after shifts to 5 C or to medium containing streptomycin or tetracycline. Absence of replication of the 50% GC component after shifting to medium containing nalidixic acid or phenethanol and its hereditary persistence during growth indicated that the 50% GC replicon was attached to the membrane. Thus, in P. mirabilis the three replicons of R factor 222 are regulated as follows: The composite and transfer portion (RTF) replicons represented by the 50% GC component require protein synthesis and membrane attachment and are negatively regulated by an inhibitor; the 58% GC or resistance-determinants replicon exists cytoplasmically and is subject only to negative control.  相似文献   

7.
R factor 1818 is shown to be eliminated from a thymineless strain of Escherichia coli J6-2 (R-1818) during thymine starvation. Readdition of thymine to the starved cultures produces a partial recovery in viable count but does not affect the proportion of R(-) cells. The R factor is not cured from exponential- or stationary-phase cultures which are starved of required amino acids as well as thymine, nor from cells which are deprived of thymine in the presence of chloramphenicol. However, in both of these cases, the extent of thymineless death is reduced. It is suggested that protein synthesis is a requirement for R-1818 elimination, and the possible nature of this protein is discussed.  相似文献   

8.
To clarify the contributions of amidophosphoribosyltransferase (ATase) and its feedback regulation to the rates of purine de novo synthesis, DNA synthesis, protein synthesis, and cell growth, mutated human ATase (mhATase) resistant to feedback inhibition by purine ribonucleotides was engineered by site-directed mutagenesis and expressed in CHO ade (-)A cells (an ATase-deficient cell line of Chinese hamster ovary fibroblasts) and in transgenic mice (mhATase-Tg mice). In Chinese hamster ovary transfectants with mhATase, the following parameters were examined: ATase activity and its subunit structure, the metabolic rates of de novo and salvage pathways, DNA and protein synthesis rates, and the rate of cell growth. In mhATase-Tg mice, ATase activity in the liver and spleen, the metabolic rate of the de novo pathway in the liver, serum uric acid concentration, urinary excretion of purine derivatives, and T lymphocyte proliferation by phytohemagglutinin were examined. We concluded the following. 1) ATase and its feedback inhibition regulate not only the rate of purine de novo synthesis but also DNA and protein synthesis rates and the rate of cell growth in cultured fibroblasts. 2) Suppression of the de novo pathway by the salvage pathway is mainly due to the feedback inhibition of ATase by purine ribonucleotides produced via the salvage pathway, whereas the suppression of the salvage pathway by the de novo pathway is due to consumption of 5-phosphoribosyl 1-pyrophosphate by the de novo pathway. 3) The feedback inhibition of ATase is more important for the regulation of the de novo pathway than that of 5-phosphoribosyl 1-pyrophosphate synthetase. 4) ATase superactivity leads to hyperuricemia and an increased bromodeoxyuridine incorporation in T lymphocytes stimulated by phytohemagglutinin.  相似文献   

9.
Exposure of nitrogen-fixing cultures of Anabaena spp. to 100% oxygen resulted in the rapid decline of nitrogenase activity. When oxygen-treated cells were transferred to 100% argon, nitrogenase activity was quickly restored in a process that required protein synthesis. Anaerobiosis was not essential for the recovery process; in fact, cells of Anabaena sp. strains CA and 1F will recover nitrogenase activity after prolonged incubation in 100% oxygen. Oxygen treatment acted directly on the intracellular nitrogenase and did not affect other metabolic processes. Examination of crude extracts of oxygen-treated Anabaena sp. strain CA indicated that both components of nitrogenase are inactivated. However, several lines of evidence suggest that oxygen treatment does not result in irreversible denaturation of nitrogenase, but rather results in a reversible inactivation which may serve as a protection mechanism. Nitrogenase present in crude extracts from cells of Anabaena sp. strain 1F which had been incubated for a prolonged period in 100% oxygen was less sensitive to oxygen in vitro than was nitrogenase of a crude extract of untreated cells.  相似文献   

10.
A strong approach to understanding the regulation of enzymes in metabolic pathways, such as those responsible for amino acid biosynthesis, is to follow enzyme levels throughout the growth curve of higher plant cells in suspension culture. The rise and fall of enzyme levels can be traced as a function of physiological stage of growth Subculturing, as typically carried out by low-factor dilution of stationary phase cells, yields a system suitable for the study of changes in enzyme and metabolite levels that accompany the transition from stationary-phase physiology to exponential-phase physiology. However, the short duration of exponential growth in such subculture protocols is inadequate to avoid carryover effects from previous stationary-phase physiology. Suspension cultures of Nicotiana silvestris Speg, et Comes (2N = 24) were used to demonstrate substantial carryover levels of acid phosphatase, alkaline phosphatase and protease activities. A subculture routine is described for maintaining cell populations in exponential phase indefinitely. About 10 generations of sustained exponential growth is required to approach a true balanced state of exponential growth. Such exponential phase populations consist of cells termed EE cells. EE-cell populations were similar to cells that have been in exponential phase for only a few generations (E cells), with respect to doubling time (about 40 h) and to minimal density of diluted populations able to resume growth (about 500 cells ml?1). EE cells possess a high content of soluble protein; they are smaller and more aggregated than are E cells. Upon dilution into fresh medium, EE cells resume exponential growth without a lag. In contrast to E cells, EE cells exhibit properties of balanced growth, since proportionate increases in cell number, dry weight, wet weight and packed-cell volume were observed. E cells, sampled at different elapsed times of growth, are likely to differ in metabolite, enzyme and cell properties, whereas EE cells exhibit near-constant properties.  相似文献   

11.
Klebsiella pneumoniae utilizes distinct pathways for the anaerobic and aerobic metabolism of glycerol. During anaerobic growth, glycerol is first converted to dihydroxyacetone by glycerol dehydrogenase; subsequent phosphorylation yields dihydroxyacetone phosphate. During aerobic growth, glycerol is initially phosphorylated to yield glycerol 3-phosphate; subsequent reduction then gives dihydroxyacetone phosphate. A coordinated response occurs when anaerobically growing cells are switched to aerobic conditions. Synthesis of glycerol dehydrogenase is repressed, glycerol dehydrogenase is inactivated, and the protein is degraded. Ethanol dehydrogenase and propanediol oxidoreductase are also inactivated when cells are exposed to oxygen (Johnson, E. A., Levine, R. L., and Lin, E. C. C. (1985) J. Bacteriol. 164, 479-483). Exposure of anaerobically growing cells to low concentrations of hydrogen peroxide also inactivated these three enzymes and led to rapid degradation of glycerol dehydrogenase. Glycerol dehydrogenase was purified and characterized after in vivo oxidative modification initiated by hydrogen peroxide. No differences in molecular weight, amino acid composition, or Km were detected between the native and oxidatively modified forms, although the modified enzyme had only 10% of the catalytic activity of the native form. The oxidatively modified enzyme was very susceptible to degradation by subtilisin while the native enzyme was resistant. Chloramphenicol prevented the inactivation and degradation of glycerol dehydrogenase caused by exposure to oxygen but did not block that caused by hydrogen peroxide. Thus, protein synthesis appears necessary for in vivo oxidative modification caused by exposure to oxygen but is not necessary when the process is initiated by exposure to hydrogen peroxide. The newly synthesized protein(s) presumably catalyzes the production of hydrogen peroxide which is required for the metal-catalyzed oxidative modification of susceptible enzymes.  相似文献   

12.
Membrane fatty acid composition and thermal resistance (D value) of Pediococcus sp. were determined for mid-exponential-phase (ME) and stationary-phase (ST) cells grown in tryptic soy broth (TSB) and tryptone-glucose-yeast extract (TGY) at 28 and 37 degrees C. As the cells entered the stationary phase of growth, the unsaturated fatty acid, C18:1 n11c, produced during the exponential phase of growth was converted to its cyclic form, C19:0 Delta9c. This shift in membrane fatty acid composition was accompanied by an increase in the D values of this bacterium. Data from this study suggest that the membrane fatty acid composition of Pediococcus sp. is dependent on the growth conditions and that membrane fatty acid composition plays a critical role in thermal resistance. Thermal inactivation curves of Pediococcus sp. cells grown in TGY at 28 degrees C indicated the presence of a cell population that is heterogeneous in thermal resistance. The growth of this bacterium in TGY at 37 degrees C and in TSB at 28 and 37 degrees C resulted in cell populations that were uniform in thermal resistance with a lag time for thermal inactivation. Thermal inactivation curves of ME and ST cultures were similar. The data presented here suggest that the cell population's uniformity of thermal inactivation is independent of the growth phase of the culture.  相似文献   

13.
Control of teichoic acid synthesis in Bacillus licheniformis ATCC 9945   总被引:7,自引:0,他引:7  
Analysis of cell walls of Bacillus licheniformis ATCC 9945 grown under phosphate limitation showed that teichoic acid could be replaced by teichuronic acid under these conditions. Teichuronic acid, however, was always present in the walls to some extent irrespective of the growth conditions. The enzymes involved in teichoic acid synthesis were investigated and the synthesis of these was shown to be repressed when the intracellular Pi level fell. CDP-glycerol pyrophosphorylase was studied in some detail and evidence is presented to show that the enzyme is inactivated under phosphate-limited conditions. The mechanism of inactivation is unknown but it has been shown that it does not require protein synthesis de novo.  相似文献   

14.
Derepressed cells of Saccharomyces mellis were treated in one of several different ways to either elute or inactivate the exocellular enzyme, acid phosphatase. The enzyme was either (i) eluted from resting cells with 0.5 m KCl plus 0.1% beta-mercaptoethanol, (ii) eluted from exponential phase cells by growing the organism in derepressing media containing 0.5 m KCl, or (iii) inactivated on exponential phase cells by adding sufficient acid or base to growth media to destroy the enzyme but not enough to kill the cells. These treatments did not affect viability. Treated cells were transferred to fresh growth media or some other reaction mixture, and the kinetics of recovery of acid phosphatase activity was studied. In these reaction mixtures, enzyme was synthesized only by actively growing cells. Treated resting cells were indistinguishable from untreated, repressed resting cells in that the organism inoculated into complete growth medium remained in the lag phase for approximately 6 hr before both growth and enzyme synthesis began. Exponential phase derepressed cells treated by method (ii) or (iii) were transferred to fresh medium under conditions that allowed growth to continue. The cells immediately started to manufacture enzyme at a rate greater than normal until the steady-state level was reached, thus demonstrating a feedback control system. Exponential phase repressed cells were also transferred to fresh derepressing media under conditions which sustained growth. Though these cells began to grow immediately, there was a lag before acid phosphatase synthesis began followed by a lengthy inductive period. The length of the period of induction could be correlated with the polyphosphate content of the cells. As the supply of polyphosphate neared exhaustion, the rate of synthesis increased rapidly until it was greater than normal; this differential rate was sustained until the steady-state concentration was reached. When derepressed cells grow in a medium containing 0.5 m KCl, some acid phosphatase activity is found free in the culture fluid and some remains firmly attached to the cells despite the presence of the salt. The bound activity is subject to feedback control, but the steady-state level of this activity on the cells is only one-third that of the acid phosphatase on cells growing in nonsaline media. The extracellular phosphatase is produced at a rate that is several-fold greater than that of the exocellular enzyme in a nonsaline medium. The synthesis of the extracellular enzyme does not seem to be controlled by a feedback mechanism but is produced at a maximal rate as long as the cells are growing.  相似文献   

15.
The activity levels of enzymes of aromatic amino acid biosynthesis respond to changing physiological states of growth, as illustrated by results obtained from suspension-cultured cells of Nicotiana silvestris Speg. et Comes line ANS 1 (2N=24). The experimental system provides a foundation for interpretations about overall regulation of enzyme levels in relationship to growth physiology. Levels of activity for shikimate dehydrogenase (EC 1.1.1.25), prephenate aminotransferase and arogenate dehydrogenase were followed throughout a growth cycle obtained by a conventional subculture protocol. Enzyme date were also obtained from cell cultures maintained in continuous exponential growth for greater than 10 generations (EE cells). Both shikimate dehydrogenase and prephenate aminotransferase exhibited elevated stationary-phase levels of enzyme, much of which was carried over into a subsequent subculture. At least 4 generations of exponential growth were required before diminution of the latter two enzymes to the levels characteristic of truly exponential-phase growth (EE cells) occurred. This is reminiscent of the overall behavior of 3-deoxy-D- arabino -heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15), specifically attributed to the properties of the cytosolic isozyme species (DAHP synthase-Co). Elevation of arogenate dehydrogenase also occurred in stationary-phase cells, but diminished rapidly during lag phase to reach the level characteristic of EE cells.  相似文献   

16.
Starvation of cells of the yeast Saccharomyces cerevisiae causes cessation of proliferation and acquisition of characteristic physiological properties. The stationary-phase state that results represents a unique developmental state, as shown by a novel conditional phenotype (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987): mutant cells cannot proliferate at the restrictive temperature when stimulated to reenter the mitotic cell cycle from stationary phase but are unaffected and continue proliferation indefinitely if transferred to the restrictive temperature during exponential growth. We have exploited this reentry mutant phenotype to demonstrate that the same stationary-phase state is generated by nitrogen, sulfur, or carbon starvation and by the cdc25-1 mutation, which conditionally impairs the cyclic AMP-mediated signal transduction pathway. We also show that heat shock, a treatment that elicits physiological perturbations associated with stationary phase, does not cause cells to enter stationary phase. The physiological properties associated with stationary phase therefore do not result from residence in stationary phase but from the stress conditions that bring about stationary phase.  相似文献   

17.
Bacterial persistence is the tolerance of a small part of a cell population to bactericidal agents, which is attained by a suppression of important cell functions and subsequent deceleration or cessation of cell division. The growth rate is the decisive factor in the transition of the cells to the persister state. A comparative study of quickly growing Escherichia coli K-12 strain MC 4100 and cyanobacteria Synechocystis sp. PCC 6803 and Anabaena variabilis ATCC 29413 growing slowly was performed. The cyanobacterial cells, like E. coli cells, differed in sensitivity to antimicrobial substances depending on the growth phase. Carbenicillin inhibiting the synthesis of peptidoglycan, a component of the bacterial cell wall, and lincomycin inhibiting the protein synthesis gave rise to nucleoid decay in cells from exponential cultures of Synechocystis 6803 and did not influence the nucleoids in cells from stationary cultures. Carbenicillin suppressed the growth of exponential cultures and had no effect on cyanobacterial stationary cultures. A suppression of Synechocystis 6803 growth in the exponential phase by lincomycin was stronger than in the stationary phase. Similar data were obtained with cyanobacterial cells under the action of H2O2 or menadione, an inducer of reactive oxygen species production. Slowly growing cyanobacteria were similar to quickly growing E. coli in their characteristics. Persistence is a characteristic feature of cyanobacteria.  相似文献   

18.
Summary When milk cultures of Streptococcus lactis are held near 00, the number of living cells decreases rather slowly for about one month. Even after 3 months, viable cells are still present, though reduced to a few thousands. The death is partly due to accumulation of acid, but mainly to oxygen. Neutralization and replacement of the free oxygen by nitrogen in the culture prolong the viability.The early cessation of fermentation when large numbers of cells are kept in milk at 00 (or at any temperature below the growth minimum) is due to some damaging effect of oxygen which the inactivated growth mechanism can not prevent or repair.The enzyme content of the cells, measured by their fermenting capacity (mg lactic acid per cell per hour) slowly decreases at temperatures below the growth minimum. After restoration of higher temperatures, the cells recover their enzyme content very slowly, and require several generations for complete recovery.The damage caused by oxygen is not the cause, but the result of the minimal temperature of growth.  相似文献   

19.
Low concentrations of HgCl(2) were found to induce extensive degradation of ribonucleic acid (RNA) in exponentially growing Escherichia coli cells but not in stationary-phase cells. Whereas 80% of cellular RNA was degraded during 90 min of incubation with 10(-5)m HgCl(2) at 37 C, HgCl(2) caused only slight degradation in stationary cells, even when present at concentrations higher than 5 x 10(-5)m. Inhibition of RNA synthesis occurred at almost the same concentration of HgCl(2) as degradation, and the ability of stationary-phase cells to synthesize RNA was also resistant to HgCl(2). The transition of cells from complete sensitivity to HgCl(2) to a fully insensitive state took place simultaneously with the cessation of growth. p-Chloromercuribenzoate was also found to induce remarkable degradation of RNA. In E. coli Q13, a mutant deficient for ribonuclease I, no degradation of RNA was evident, even in the exponential growth phase. 3'-Mononucleotides but not 5'-mononucleotides were found among the degradation products of cellular RNA. 2',3'-Cyclic mononucleotides were produced when RNA was degraded by the cell-free extracts of the Hg treated cells. Almost complete unmasking of the latent ribonuclease occurred in the particle fraction containing subribosomal particles of the Hg-treated cells. These data suggest that the incubation of exponentially growing E. coli cells with HgCl(2) led to the unmasking of ribonuclease I, which resulted in the extensive degradation of cellular RNA. The activation of ribonuclease by HgCl(2) in the isolated particulate fraction of E. coli K-12 which occurred in vitro suggested the presence of an Hg-sensitive inhibitor for ribonuclease I.  相似文献   

20.
Cells of Bacillus subtilis sporulate when they are transferred, at any time of growth in nutrient sporulation medium, to a potassium-phosphate buffer containing slowly utilizable carbon sources such as l-aspartate, citrate, l-glutamate, or lactate. Transfer to buffer containing more rapidly utilizable carbon sources such as malate or glucose leads to sporulation only when the cells either had reached the end of growth or when the transfer medium also contains glycine. Acetate, which as a sole carbon source does not allow growth, also does not alone permit sporulation; however, the presence of both acetate (0.05 m) and glycine or l-serine (0.01 m) in the buffer medium allows sporulation if the cells are transferred to this medium after they have grown in the nutrient sporulation medium beyond the end of the exponential growth phase (T(0)). The development, required before transfer, does not seem to involve the end of a round of deoxyribonucleic acid duplication, as experiments with tryptophan-starved cells have indicated. Glycine or serine cannot be replaced by any of the known metabolites, which are partially derived from them. Amino acid analysis of nutrient sporulation medium showed that glycine (but not serine) is present at a concentration of 0.3 mm at the beginning of the developmental period, thus allowing, in combination with an acetyl-coenzyme A (CoA) precursor, sporulation but not growth. Acetyl-CoA is required not only for adenosine-triphosphate synthesis but also for some other reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号