首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods for the control of ovulation with GnRH or the GnRH analog D-Phe6 -LHRH (GnRH-A), were evaluated in gilts and sows as the last step in development of a fixed-time Al protocol. This involved 3 field trials using 2,744 gilts (10 units) and 71,628 sows (33 units). In Trial 1, the GnRH-A (75 microg) was given subsequent to treatment with altrenogest for cycle control or eCG for the stimulation of uniform follicle development in gilts. The release of LH was followed by ovulations which commenced within 36.4 +/- 3.3 hr and were terminated at 39.0 +/- 2.8 hr after administration of GnRH-A. This degree of synchronization of ovulations enabled the use of fixed-time AI. Consequently, subsequent to pretreatment with altrenogest and eCG, in 10 production units 1,285 gilts received 50 microg GnRH-A and 1,459 gilts 500 IU hCG serving as positive controls (Trial 2); all the gilts were inseminated 24 and 42 hr after treatment. Pregnancy rate and piglet index (n of piglets per 100 first inseminations) following GnRH-A vs hCG were 78.8% and 779 vs 74.4% and 728, respectively (P < 0.05). In field trials with first litter gilts and multiparous sows (33 units holding from 250 to 6,000 sows), 1,000 IU eCG was used for estrus control after weaning and 25 microg or 50 microg GnRH-A were given 55 to 58 hours after eCG (n = 19,954 and 20,701) (Trial 3). Sows treated during the same time period with 300 microg GnRH plus 300 IU. hCG (n = 30,973) served as positive controls; all sows were inseminated 24 and 42 hours after treatment. Pregnancy rates for 50 microg GnRH-A, 25 microg GnRH-A and 300 microg GnRH plus 300 IU hCG were 83.0%, 81.7% and 80.7%, and the piglet indices 913, 899 and 880, respectively (P < 0.05). Unit size and parity had significant effects on fertility and productivity. In all studies, results with 50 microg GnRH-A were superior. In year-long studies, highest levels of fertility in response to these treatments were seen from December to May.  相似文献   

2.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

3.
To evaluate the effects of eCG dosage on recovery and quality of Day 5 embryos and on subsequent development and survival after embryo transfer, batches of 5 to 10 donor sows were treated with 1000 or 1500 IU eCG. Recipients from the same batch were synchronously treated with 800 IU eCG. Ovulation was induced with 750 IU hCG (72 h after eCG) in donors and recipients. Donors were inseminated and embryos were collected at 162 h after hCG (120 h after ovulation). Ovulation rate was lower using 1000 IU eCG (28.5+/-11.7; n=48) than 1500 IU eCG (45.7+/-20.3; n=32; P<0.0001). Embryo recovery rate (82.9+/-16.9%) and percentage expanded blastocysts (56.2+/-31.4%) were similar (P>0.05). Expanded blastocysts from each group of sows were pooled into 2 groups within eCG treatment, containing embryos from normally ovulating sows (< or = 25 corpora lutea [CL]) or from superovulated sows (> 25 CL). Average diameter and number of cells of a random sample of the expanded blastocysts per pool were recorded. The average diameter of blastocysts (160.5+/-11.5 microm) was not affected by eCG dosage or ovulation rate (P>0.10). The average number of cells per embryo was higher in the 1000 IU eCG group (84.3+/-15.3) than in the 1500 IU eCG group (70.2+/-1.9; P<0.05) but was similar for normal and superovulated donors within each eCG group (P>0.10). Of the 4 groups, litters of 28 to 30 blastocysts were nonsurgically transferred to 27 synchronous recipients. Pregnant recipients were slaughtered on Day 37 after hCG treatment to evaluate embryonic development and survival. Pregnancy rate for the 1000 and 1500 IU eCG donor groups was 71% (10/14) and 46% (6/13; P>0.10), respectively. The number of implantations and fetuses for the 1000 IU eCG groups was 12.9+/-3.0 and 11.1+/-2.7, and 14.2+/-7.0 and 10.5+/-4.6, respectively, for the 1500 IU eCG groups (P>0.10). After post-priory categorizing the litters of blastocysts to below or above the average diameter (158 microm) of the transferred embryos, irrespective of eCG dosage or ovulation rate, the pregnancy rate was 43% (6/14) and 77% (10/13; P<0.10), respectively. Post-priory categorizing the transferred litters to below or above the average number of cells per embryo litter, irrespective of eCG dosage or ovulation rate, showed no differences in pregnancy rates or number of implantations and fetuses (P>0.10). It was concluded that eCG dosage affects embryonic development at Day 7 after hCG, and this effect was not due to ovulation rate. Embryonic survival after nonsurgical transfer was not related to eCG dosage but tended to be related to the diameter of the blastocysts.  相似文献   

4.
Angiogenic factors can induce the perifollicular capillary network in the theca interna that shows marked changes in and around the preovulatory luteinizing hormone (LH) surge. To get more information on their functional crosstalk, the aim of the present study was to investigate the manner of mRNA expression of vascular endothelial growth factors (VEGFs) 120, 164, angiopoietin (Ang)-1, Ang-2 and their specific receptors during the periovulatory phase. We used an established equine and human chorionic gonadotropins (eCG/hCG)-derived experimental model capable of stimulating naturally occurring follicular maturation, ovulation and corpus luteum (CL) formation. On day 28 postpartum, immature female rats were administrated s.c. with 10 IU of eCG to promote follicular development, followed 48 hr later by i.p. administration of 20 IU of hCG. Ovaries were dissected at 0, 6, 12, 18 and 24 hr after hCG treatment, and were obtained on day 30 in the untreated control. After induction of follicular growth by the eCG treatment, each mRNA expression of VEGF 120, VEGF 164, Neuropilin-1 and Flt-1 significantly increased. The peaks in mRNA expressions of VEGF120 and VEGF164 were both found at 18 hr after hCG treatment. Flk-1 mRNA expression maintained up to 6 hr after hCG treatment, and then decreased at 12, 18 and 24 hr after hCG treatment. Ang-2 mRNA expression increased in the ovaries at 6 and 12 hr after hCG treatment. Tie-2 mRNA expression decreased at 24 hr after the treatment of gonadotropins. Our findings suggest that ovarian vascular formation during the periovulatory period including preovulatory follicles, ovulation and CL formation may develop via crosstalk of the VEGF-Flt-1 and Ang-Tie2 systems.  相似文献   

5.
The purpose of the present study was to hasten the resumption of ovarian activity early postpartum in lactating dairy cows, using equine chorionic gonadotropin (eCG), to enhance follicular growth, followed by hCG, to induce ovulation. Primiparous Holstein dairy cows (n=21) were assigned equally into eCG, eCG-hCG and Control groups. Cows in the eCG and eCG-hCG groups received an i.m. injection of eCG (500 IU Folligon?) on Day 6 postpartum. Cows in the eCG-hCG group were also given an i.m. injection of hCG (500 IU Chorulon?), once dominant follicle reached the diameter of 13-16 mm following eCG injection. Cows in Control group did not receive any treatment. Daily blood sampling and ultrasound examination were conducted, starting at Day 6 postpartum until confirming the third ovulation. Follicles ≥10 mm in diameter were detected on Day 11.5±1.48, 10.1±0.52 and 11.1±1.36 after calving in Control, eCG and eCG-hCG groups, respectively (P>0.05). The first wave dominant follicle ovulated in 71.4% of cows treated with eCG and eCG-hCG. In contrast, none of the first wave dominant follicles ovulated in Control cows. By Day 20 postpartum, all cows in eCG group, 6/7 cows in eCG-hCG group and none of the cows in Control group ovulated (P<0.05). Short estrous cycles (≤16 days) were detected in 2/7, 1/7 and 6/7 cows in eCG, eCG-hCG and control groups, respectively (P<0.05). In conclusion, injection of eCG on Day 6 postpartum could assist the early resumption of ovarian activity by enhancing ovarian follicle growth and early ovulation in postpartum cows. In this context, subsequent hCG injection may not provide any more beneficial effect.  相似文献   

6.
This study assessed pulsatile release of LH during altrenogest treatment after weaning in primiparous sows and related this to follicle development, estrus and ovulation rate. Weaned sows (n=10) received altrenogest 20mg/day from D-1 to D13 (weaning=D0) at 0800 h. On D13, blood samples were collected every 12 min from 1000 until 1900 h (1st sampling period) and from 2300 h until 0800 h (2nd sampling period). During the 1st sampling period, LH concentrations remained low and no LH pulses were detected in 8/10 sows. During the 2nd sampling period, average and basal LH concentrations (P<0.04) and frequency of pulses (P<0.0001) were higher than during the 1st sampling period. Sows with short vs. long intervals to estrus (<5 days vs. ≥5 days) had higher basal and average LH concentrations during the 2nd sampling period (P≤0.004) and showed more follicular growth during treatment (P=0.007), generating larger follicles at D14 (P=0.005). Sows with high ovulation rate (≥25) displayed more LH pulses in total than sows with low (<25) ovulation rates (P=0.03). In conclusion, this study showed that altrenogest efficiently prevented LH pulsatility during the first bleeding period and that low frequency/high amplitude LH pulses were generally present during the second bleeding period. This variability in LH release in between two altrenogest administrations (24h) may explain why follicular growth progresses to 5mm during altrenogest treatments. LH pulsatility was related to length of the follicular phase and ovulation rate, which signifies its relevance.  相似文献   

7.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

8.
The experimental objective was to determine how insulin-like growth factor binding proteins (IGFBP), as examined by Western ligand blot procedures, related to porcine follicular steroidogenesis. Weaned sows were ovariectomized at various times after litter removal in three experiments. In experiments 1 and 2, sows were ovariectomized at 48-120 h after weaning. In experiment 1, pools of all small (1-3 mm), medium (greater than 3-6 mm), or large (greater than 6-9 mm) follicles were made for each sow; in experiment 2, fluid was collected individually from the 10 largest follicles per ovary. A third experiment was conducted to examine changes after an ovulatory dose of hCG, but prior to ovulation. In this experiment, sows were treated with eCG at weaning, given hCG 72 h later, and ovariectomized 0-36 h after the ovulatory dose of hCG. Follicular fluid was collected from the 10 largest follicles per sow. In experiments 1 and 2, IGFBP-3 in follicular fluid remained constant over follicle diameters and stage sof development, and IGFBP-2 decreased with advancing follicular development as concentrations of estradiol, androstenedione, and progesterone increased. In experiment 1, after the presumed LH surge when the concentration of all steroids was low, there was a sharp increase in band intensity for IGFBP-2. Similarly, estradiol and androstenedione were low in preovulatory sows in experiment 2, though progesterone increased and IGFBP-2 decreased with follicle diameter. In experiment 3, progesterone remained elevated from 0 to 36 h after hCG, even though IGFBP-2 did not increase until after 24 h post-hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

10.
Nissen  A. K.  Schmidt  M.  Hyttel  P.  Greve  T. 《Acta veterinaria Scandinavica》2000,41(3):321-328
The hCG induced ovulation in sows was studied by use of ultrasonography, and an investigation of the development and diversity of the zygotes/embryos was performed at 24 h after ovulation. Crossbred sows (N=48) were weaned (day 0) and checked for heat twice daily from day 3 onwards. From day 4, the ovaries were transrectally scanned twice daily On day 4, the sows were given an injection of 750 iu hCG im and inseminated 27 ± 2 h (X ± SD) and 38 ± 1 h later. From 38 to 48 h after the hCG injection, the ovaries were scanned at 60 to 90 min intervals. At 24 h after ovulation the oviducts were surgically flushed in 18 sows. Out of the 48 sows, 34 showed heat at 12–36 h after the hCG-treatment and 14 showed heat before the hCG treatment. In the former group of sows, 20 (59%) ovulated within the interval of 38 to 48 h after the hCG treatment, and the follicular size immediately before ovulation was 7.8 ± 0.6 mm. Among the sows which showed heat before hCG treatment only 7 (50%) ovulated within the above interval and the preovulatory follicle size was larger (8.3 ± 0.5, p<0.05) than in the former group of sows, which showed heat after the hCG treatment. The flushing of 18 sows yielded a total of 243 ova, 70 (29 %) 1-cell stages, 160 (66 %) 2-cell stages and 13 (5%) 4-cell stages. A pronounced difference in the degree of variation in embryonic development was seen between sows: 4 animals yielded 1- to 4-cell stages, one exclusively 2-cell stage. In conclusion, the control of ovulation in sows by hCG treatment will affect the follicular growth and the exact timing of ovulation can not always be relied on. It is strongly recommended to use ultrasonography to monitor the time of ovulation if this parameter is important. Ova recovered at 24±1 h after the median time of ovulation revealed a pronounced diversity (1- to 4- cell stage) within sows. No obvious relation with this embryonic diversity and the follicular size at ovulation was seen in these data.  相似文献   

11.
The aim of the present study was two-fold. First, to evaluate the effect of exogenous progesterone on ovarian follicular dynamics in order to assess its ability to synchronize ovarian activity in the vicuna. Secondly, to evaluate the ovarian response to the treatment with eCG through the observation of the structures developed in the ovaries. Follicular dynamics was monitored daily by transrectal ultrasonography in 12 adult, non-pregnant vicunas. Plasma progesterone and estradiol-17beta concentrations were measured in blood samples collected daily. In experiment 1, intravaginal devices containing 0.33g of progesterone were inserted into the vagina and kept in place for 5 days (treatment group, n = 8). After progesterone withdrawal, five animals were further monitored in order to evaluate the efficacy of the CIDR to synchronize the emergence of a dominant follicle. In experiment 2, four females received 750IU of eCG IM. Two were previously monitored ultrasonographically to confirm the absence of a dominant follicle at the beginning of the superstimulatory treatment (group A). The other two animals had a CIDR inserted into the vagina for 5 days and the superstimulatory treatment was applied 24h after device withdrawal (group B). Females from both groups were surgically explored 96 h after eCG injection; the ovaries were exposed and the number of newly formed structures produced by each ovary was counted. Peak progesterone concentrations (25.9 +/- 5.29 nmol l(-1), mean +/- S.E.M.) were attained on day 1 after device insertion, remained high until the day of device withdrawal (9.7 +/- 1.98 nmol l(-1)) and decreased to 5.5 +/- 1.13 nmol l(-1) the day after. There was no follicle development to the state of dominance after device insertion. Moreover, mean follicle diameter steadily decreased after insertion of the device until the minimum mean value (1.85 +/- 0.17 mm) was recorded on day 5 (P = 0.006). Similarly, plasma concentrations of estradiol-17beta remained below 35 pmol l(-1) during the period of progesterone treatment in all animals and the mean estradiol-17beta declined with the lowest value (22.1 +/- 2.19 pmol l(-1)) being recorded on day 4 after device insertion. After superstimulation of follicular development with eCG, the total number of follicles that developed was 33 in group A and 58 in group B and the mean number of newly developed ovarian structures per female was 22.75 +/- 4.26. In conclusion, progesterone released by the CIDR exerts a negative effect on ovarian follicular development and function suggesting intravaginal devices could be used to synchronize the beginning of follicular waves during a superstimulatory treatment. There was also a tendency for greater ovarian follicular development when the animals were previously treated with progesterone.  相似文献   

12.
Angiogenesis is the process that drives blood vessel development in growing tissues in response to the local production of angiogenic factors. With the present research the authors have studied vascular endothelial growth factor (VEGF) production in ovarian follicles as a potential mechanism of ovarian activity regulation. Prepubertal gilts were treated with 1250 IU equine chorionic gonadotropin (eCG) followed 60 h later by 750 IU of human chorionic gonadotropin (hCG) in order to induce follicle growth and ovulation. Ovaries were collected at different times of the treatment and single follicles were isolated and classified according to their diameter as small (<4 mm), medium (4-5 mm), or large (>5 mm). VEGF levels were measured in follicular fluid by enzyme immunoassay, and VEGF mRNA content was evaluated in isolated theca and granulosa compartments. Equine chorionic gonadotropin stimulated a prompt follicular growth and induced a parallel evident rise in VEGF levels in follicular fluid of medium and large follicles. Analysis of VEGF mRNA levels confirmed the stimulatory effect of eCG, showing that it is confined to granulosa cells, whereas theca cells maintained their VEGF steady state mRNA. Administration of hCG 60 h after eCG caused a dramatic drop in follicular fluid VEGF that reached undetectable levels in 36 h. A parallel reduction in VEGF mRNA expression was recorded in granulosa cells. The stimulating effect of eCG was also confirmed by in vitro experiments, provided that follicles in toto were used, whereas isolated follicle cells did not respond to this hormonal stimulation. Consistent with the observation in vivo, granulosa cells in culture reacted to hCG with a clear block of VEGF production. These results demonstrate that while follicles of untreated animals produce stable and low levels of the angiogenic factor, VEGF markedly rose in medium and large follicles after eCG administration. The increasing levels, essentially attributable to granulosa cells, are likely to be involved in blood vessel development in the wall of growing follicles, and may play a local key role in gonadotropin-induced follicle development. When ovulation approaches, under the effect of hCG, the production of VEGF is switched off, probably creating the safest conditions for the rupture of the follicle wall while theca cells maintained unaltered angiogenic activity, which is probably required for corpus luteum development.  相似文献   

13.
This study aimed to evaluate the effectiveness of superovulation protocols in improving the efficiency of embryo donors for porcine nonsurgical deep-uterine (NsDU) embryo transfer (ET) programs. After weaning (24 hours), purebred Duroc sows (2–6 parity) were treated with 1000 IU (n = 27) or 1500 IU (n = 27) of eCG. Only sows with clear signs of estrus 4 to 72 hours after eCG administration were treated with 750 IU hCG at the onset of estrus. Nonhormonally treated postweaning estrus sows (n = 36) were used as a control. Sows were inseminated and subjected to laparotomy on Days 5 to 6 (Day 0 = onset of estrus). Three sows (11.1%) treated with the highest dosage of eCG presented with polycystic ovaries without signs of ovulation. The remaining sows from nonsuperovulated and superovulated groups were all pregnant, with no differences in fertilization rates among groups. The number of CLs and viable embryos was higher (P < 0.05) in the superovulated groups compared with the controls and increased (P < 0.05) with increasing doses of eCG. There were no differences among groups in the number of oocytes and/or degenerated embryos. The number of transferable embryos (morulae and unhatched blastocysts) obtained in pregnant sows was higher (P < 0.05) in the superovulated groups than in the control group. In all groups, there was a significant correlation between the number of CLs and the number of viable and transferable embryos, but the number of CLs and the number of oocytes and/or degenerated embryos were not correlated. A total of 46 NsDU ETs were performed in nonhormonally treated recipient sows, with embryos (30 embryos per transfer) recovered from the 1000-IU eCG, 1500-IU eCG, and control groups. In total, pregnancy and farrowing rates were 75.1% and 73.2%, respectively, with a litter size of 9.4 ± 0.6 piglets born, of which 8.8 ± 0.5 were born alive. There were no differences for any of the reproductive parameters evaluated among groups. In conclusion, our results demonstrated the efficiency of eCG superovulation treatments in decreasing the donor-to-recipient ratio. Compared with nonsuperovulated sows, the number of transferable embryos was increased in superovulated sows without affecting their quality and in vivo capacity to develop to term after transfer. The results from this study also demonstrate the effectiveness of the NsDU ET procedure used, making possible the commercial use of ET technology by the pig industry.  相似文献   

14.
Efficacy of hCG and GnRH for inducing ovulation in the jenny   总被引:1,自引:1,他引:0  
Knowledge about management of ovulation in the donkey is limited compared to that in the horse. This experiment was designed to evaluate the efficacy of injecting single doses of lecirelin (a GnRH-analogue) or of hCG to induce ovulation in the jenny and to determine whether effects are dependent upon follicular diameter at time of injection. Ovarian activity and follicular growth were monitored by rectal ultrasonography. Jennies were randomly allotted to the following groups: Group GnRH, treated with 100 microg lecirelin; Group hCG, treated with 2500 IU hCG; Group C, untreated and monitored for spontaneous ovulation. Animals were also categorized into subgroups depending upon follicular diameter: 30-35 mm (GnRH-1, hCG-1 and C-1) or 36-40 mm (GnRH-2, hCG-2 and C-2). Jennies in the two hormone treatment groups did not differ significantly for time from treatment to ovulation, but there was a significant reduction in time to ovulation as follicle size at treatment increased. Jennies treated with either lecirelin or hCG had significantly smaller follicle size at ovulation than jennies in the Control groups that underwent spontaneous ovulation. Treatment groups did not differ significantly in the proportion of jennies that ovulated within 48 h of injection or between 25 and 48 h following injection. These results highlight the usefulness of lecirelin for induction and synchronization of ovulation in the jenny, particularly since it would avoid the risk of reduced hCG response in reproductive management programs in which that hormone was repeatedly used.  相似文献   

15.
The objective of this study was to determine if administration of a set dose (10 μg) of a gonadotropin-releasing hormone agonist, buserelin (Receptal; Rc), at set times after altrenogest (Regumate; RU) treatment or after weaning was able to induce and synchronize ovulation in female swine (gilts and sows). The pubertal (n = 187) gilts were allocated to four groups, all synchronized with RU. Group 1 (RU) was inseminated twice at detected estrus, Group 2 (RU+Rc120) and Group 4 (RU+Rc104) received 10 μg Rc at 120 or 104 h after the end of RU treatment, respectively, and Group 3 (RU+eCG+Rc104) was treated with 800 IU equine chorionic gonadotropin (eCG) at 24 h and Rc 104 h after the end of RU treatment, respectively. Gilts were inseminated twice at predetermined times, namely 144 and 168 h (Group 2), 128 and 144 h (Group 3), and 144 and 152 h (Group 4) after the end of RU treatment, respectively. Pregnant gilts were slaughtered at 30 d. Administration of Rc 104 h after the end of RU feeding synchronized ovulation over a 24-h time window in 97.9% and 100% of the gilts of Groups 3 and 4, respectively, whereas Rc administration at 120 h (Group 2) only successfully synchronized 88.9% of the gilts over 24 h. Ovulation rates of gilts of Groups 2 and 4 were similar to that of the control group. Pregnancy rates were numerically higher in Groups 2 and 3 (92% and 96%, respectively) compared with those of Groups 1 and 4 (84% and 81%, respectively). Combination of eCG with Rc administration at 104 h (Group 3) increased ovulation rate (+4 CL) but decreased embryo survival to 62% at Day 30. The weaned sow experiment involved 61 sows of a range of parities (2.7 ± 0.9), allocated to two control groups (Control 104 group and Control 94 group) and two treated groups (Rc104 group and Rc94 group), which received 10 μg Rc at 104 and 94 h after weaning, respectively. The females were inseminated at detected estrus. All pregnant sows farrowed. After treatment with Rc 94 h after weaning, 100% of sows ovulated over a 24-h time window versus only 68.7% of controls. Farrowing rate and litter size of the sows treated with Rc at that time were unaffected compared with that of control sows. In contrast, Rc administration at 104 h after weaning may have been too late; only 66.7% of the treated sows ovulated during a 24-h period. This proportion was numerically lower but not significantly different than that for control sows. Farrowing rate and litter size of treated sows were not significantly different than that of controls. Administration of Rc at the dose and times selected in this study tightened synchrony of ovulation in gilts and in sows after weaning. It remains to be established if such a synchrony is suitable to obtain good fertility after a single artificial insemination at a predetermined time.  相似文献   

16.
Resynchronization protocols have been proposed as a way of shortening females’ unproductive time in the flock, with good results in cattle and sheep. In goats, initial studies have shown that a second progestogen device inserted before luteolysis and pregnancy diagnosis does not interfere with the corpus luteum lifespan or functionality. This study aimed to evaluate the follicular growth, ovulation pattern and pregnancy rate after insertion of a second and new progestogen device for resynchronizing, with or without equine Chorionic Gonadotrophin (eCG), submitted to natural mating (NM) or artificial insemination (AI) to propose a viable resynchronization protocol for dairy goats. A total of 38 multiparous Saanen goats underwent a short-term progesterone protocol [six days exposed to medroxyprogesterone acetate (MAP) intravaginal sponges + 200 IU eCG and 0.12 mg of cloprostenol sodium on the 5th day + 0.025 mg of lecirelin 34 hours after sponge withdrawal] and, on day 16th after the ovulation, received a new MAP device which was retained until day 21. At this moment females were split into four groups: GeCG+NM – 100 IU eCG with NM; GSal+NM – saline solution with NM; GeCG+AI – 100 IU eCG with AI; and GSal+AI – saline solution with AI. Ultrasound scans were performed every 12 h from sponge withdrawal (day 21) until 108 h after sponge withdrawal (day 25) for follicular dynamics evaluation, at 240 h (day 31) for assessing the presence of active corpus luteum, and on day 60 for pregnancy diagnosis. No differences were found regarding ovulation time, synchronization and follicle size. However, GeCG+NM presented a greater estrus manifestation rate (100%) and pregnancy rate (62.5%) when compared to GSal+AI. In conclusion, resynchronization protocols in dairy goats may present satisfactory results.  相似文献   

17.
Non-invasive fecal steroid analyses were used to characterize gonadal activity in the fishing cat (Prionailurus viverrinus). Estrogen, progestagen and androgen metabolites were quantified in fecal samples collected for 12 months from four males and 10 females housed at seven North American zoological institutions. Male reproductive hormone concentrations did not vary (P>0.05) among season, and estrogen cycles were observed year-round in females and averaged (±SEM) 19.9±1.0 days. Mean peak estrogen concentration during estrus (460.0±72.6ng/g feces) was five-fold higher than baseline (87.3±14.0ng/g feces). Five of seven females (71.4%) housed alone or with another female demonstrated spontaneous luteal activity (apparent ovulation without copulation), with mean progestagen concentration (20.3±4.7μg/g feces), increasing nearly five-fold above baseline (4.1±0.8μg/g feces). The non-pregnant luteal phase averaged 32.9±2.5 days (n=13). One female delivered kittens 70 days after natural mating with fecal progestagen concentrations averaging 51.2±5.2μg/g feces. Two additional females were administered exogenous gonadotropins (150IU eCG; 100IU hCG), which caused hyper-elevated concentrations of fecal estrogen and progestagen (plus ovulation). Results indicate that: (1) male and female fishing cats managed in North American zoos are reproductively active year round; (2) 71.4% of females experienced spontaneous ovulation; and (3) females are responsive to exogenous gonadotropins for ovulation induction, but a regimen that produces a normative ovarian steroidogenic response needs to be identified.  相似文献   

18.
The aim of this work was to evaluate the effect of different doses of eCG administered subcutaneously (0, 50 and 200 IU) and the hormonal induction of ovulation (GnRH or hCG) on embryo recovery and in vitro development of embryos post-vitrification in two selected lines of rabbit does. The two selected lines were line V (selected for the litter size at weaning) and line R (selected for growth rate). Administration of 200 IU of eCG significantly increased ovulation rate (19.2 +/- 1.2 versus 15.5 +/- 1.1 and 12.2 +/- 1.3, and the number of haemorrhagic follicles (13.8+/-1.6 versus 3.8+ /- 1.4 and 3.8 +/- 1.7), but significantly decreased recovery rate (28.8 +/- 6.3 versus 47.7 +/- 5.7 and 48.7 +/- 6.7, 200 IU versus 50 IU and 0 IU eCG, respectively), the number of normal embryos recovered per doe with at least one embryo (5.8 +/- 0.9 versus 8.2 +/- 0.9, 200 IU versus 50 IU eCG doses) and the in vitro development of embryos post-vitrification (51.9% versus 66.1%, 200 IU versus 50 IU eCG doses, respectively). Inducing ovulation with hCG significantly increased ovulation rate when compared with GnRH (17.3 +/- 0.8 versus 13.8+/-1.4), but no significant differences in embryo recovery and embryo development post-vitrification were observed between the two treatments. No significant differences were observed between the two selected lines in ovulation and recovery rates, the number of haemorrhagic follicles and the number of recovered embryos per doe. However, the post-vitrification in vitro rate of development was 59.7% for line R and 51.9% for line V (p < 0.05). It was concluded that the use of 50 IU of eCG subcutaneous with hCG or GnRH prior to embryo cryopreservation programmes in rabbits achieves the best results for embryo recovery, with the best development of recovered embryos post-vitrification.  相似文献   

19.
Pelican KM  Wildt DE  Howard JG 《Theriogenology》2006,66(6-7):1768-1777
In many species, controlling the ovary prior to induction of ovulation improves the success of ovarian response and artificial insemination (AI). We assessed the impact of suppression of estrus with the GnRH agonist, Lupron, on ovarian sensitivity to equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) in the clouded leopard. Seven female clouded leopards were given two injections of Lupron (3.75 mg IM) 23 d apart, followed 44 d later by eCG and hCG. Daily fecal samples were collected from 60 d before Lupron to 60 d after hCG. Fecal metabolites of estrogen (E) and progesterone (P) were measured by radioimmunoassay. Lupron decreased (P < 0.05) the number of E peaks during Lupron treatment compared to pre-Lupron. All females had baseline E and six of seven (86%) had nadir P on day of eCG. Exogenous gonadotropins induced E elevations in all females. However, mean E in the gonadotropin-provoked estrus was decreased (P < 0.05) compared to pre-Lupron estrous periods. Only one of seven (14%) females ovulated after eCG/hCG. In conclusion, estrous cycle control with Lupron resulted in predictable ovarian suppression prior to gonadotropin stimulation but altered ovarian sensitivity by an as yet unknown mechanism so that ovulation was inhibited, even when using a proven exogenous gonadotropin protocol.  相似文献   

20.
The aim of this study was to evaluate the superovulatory (SOV) response of Sindhi (Bos indicus) donors submitted to an ovarian follicular superstimulatory protocol replacing the last two doses of pFSH by eCG. Forty-eight SOV treatments were performed in a crossover design in 19 nulliparous and primiparous females that were randomly divided into two groups: FSH (n=24), which consisted of eight pFSH injections, or FSH/eCG (n=24), which consisted of six pFSH injections followed by two eCG injections. Each female underwent two or three SOV treatments that consisted of an i.m. injection of 2mg estradiol benzoate and the insertion of an intravaginal progesterone-releasing device on Day 0. On Day 4, superstimulatory treatments were initiated and 100mg pFSH was divided into twice daily decreasing doses over a 4-day period. In the FSH/eCG group, the last two doses of pFSH were replaced by two doses of eCG (150 IU eCG each). At the time of the fifth and sixth injections of FSH, 0.150 mg PGF(2α) was injected i.m. The intravaginal progesterone-releasing device was removed at the time of the last FSH or eCG injection and ovulation was induced with 0.2 mg GnRH 18 h later. All females were artificially inseminated with frozen-thawed semen from the same bull 6 and 18 h after GnRH treatment. Seven days after GnRH treatment, embryos/ova were recovered and classified. Follicular superstimulatory (number of follicles ≥6mm at the time of the last FSH or eCG injection) and SOV (CL number) responses were determined by transrectal ultrasonography. Data were analyzed using generalized linear models and results were presented as least squares means±standard error. The FSH/eCG group had higher superstimulatory (33.8±3.9 compared to 23.8±2.6 follicles; P=0.03) and SOV (16.8±2.9 compared to 10.8±2.1 CL; P=0.10) responses. Although the number of total ova/embryos was not different between groups (8.2±1.8 compared to 5.9±1.4 for FSH/eCG and FSH groups, respectively; P=0.25), the number (5.8±1.3 compared to 2.6±0.7; P=0.02) and percentage (75.6±5.7 compared to 53.2±9.7%; P=0.05) of transferable embryos was greater for the FSH/eCG females. Therefore, there was improvement in follicular superstimulatory and SOV responses and embryo quality in FSH/eCG-treated females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号