首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H1 histone kinases from nuclei of Physarum polycephalum   总被引:1,自引:0,他引:1  
  相似文献   

2.
H1 phosphorylation has been studied through the precise nuclear division cycle of Physarum polycephalum. The number of sites of phosphorylation of Physarum H1 is very much larger than the number of sites reported for mammalian H1 molecules which is consistent with the larger molecular weight of Physarum H1. At metaphase all of the Physarum H1 molecules contain 20-24 phosphates. Immediately following metaphase, these metaphase-phosphorylated H1 molecules undergo rapid dephosphorylation to give an intermediate S phase set of phosphorylated H1 molecules containing 9-16 phosphates. Progressing into S phase newly synthesized H1 is phosphorylated and eventually merges with the old dephosphorylated H1 to give a ladder of bands 1-20. By the end of S phase or early G2 phase, there is a ladder of bands 1-16 all of which undergo phosphate turnover. Further into G2 phase the bands move to higher states of phosphorylation, and by prophase all of the H1 molecules contain 15-24 phosphates which increases to 20-24 phosphates at metaphase. These results support the proposals that H1 phosphorylation is an important factor in the process of chromosome condensation through G2 phase, prophase to metaphase.  相似文献   

3.
4.
Amoebae of Physarum polycephalum carrying the mth mating-type allele may differentiate into plasmodia in the absence of mating. Such plasmodia are haploid and, upon sporulation, produce mainly inviable spores. We have asked whether the viable spores arise from meiotic or mitotic divisions. Using a microfluorometric measurement of the deoxyribonucleic acid content of individual nuclei, we found the fraction of viable spores to be correlated with the proportion of rare, diploid nuclei containing in the generally haploid plasmodium. When homozygous diploid plasmodia were created by heat shocking, spore viability increased dramatically. We suggest that viable spores are produced via meiosis in mth plasmodia, that the mth allele has no effect on sporulation per se, and that the normal source of viable haploid spores is a small fraction of diploid nuclei ubiquitous in haploid plasmodia.  相似文献   

5.
In the heterothallic myxomycete Physarum polycephalum, uninucleate amoebae normally differentiate into syncytial plasmodia following heterotypic mating. In order to study the genetic control of this developmental process, mutations affecting the amoebal-plasmodial transition have been sought. Numerous mutants characterized by self-fertility have been isolated. The use of alkylating mutagens increases the mutant frequency over the spontaneous level but does not alter the mutant spectrum. Three spontaneous and 14 induced mutants have been analyzed genetically. In each, the mutation appears to be linked to the mating type locus. In three randomly selected mutants, the nuclear DNA content is the same in amoebae and plasmodia, indicating that amoebal syngamy does not precede plasmodium development in these strains. These results indicate that a highly specific type of mutational event, occurring close to or within the mating type locus, can abolish the requirement for syngamy normally associated with plasmodial differentiation. These mutations help define a genomic region regulating the switch from amoebal to plasmodial growth.  相似文献   

6.
7.
A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.  相似文献   

8.
When actively growing microplasmodia of the lower eukaryote Physarum polycephalum are gently pelleted and allowed to stand at high plasmodial densities for 45 min, three specific nuclear acidic proteins undergo dramatic quantitative changes. Two major proteins of molecular weight 46 000 and 94 000 increase 110 and 320%, respectively. The increase in these two proteins is not markedly attenuated during periods when 88% total protein synthesis is blocked by cycloheximide, and the specific radioactivities of these proteins from prelabeled and continuously labeled control and pelleted plasmodia are essentially identical. A third protein of molecular weight 34 000 decreases by 51 % during the 45 min period and when cycloheximide is present, a 36% decrease in this protein still occurs. The rapid changes which occur in these three proteins in response to high plasmodial density also develop, together with many other changes, during plasmodial differentiation, but only after about 6 h of starvation. It is concluded that the rapid increase in the 46 000 and 94 000 mol. wt proteins results from protein transfer phenomena rather than de novo synthesis and that these proteins perhaps function in the early reorganization of cell metabolism rather than in structural differentiation. In further comparative studies it has been observed that mature spherules of P. polycephalum contain a major acidic protein not present in growing or differentiating plasmodia and also that the complement of residual acidic proteins differs in starvation-induced vs cold-induced spherules.  相似文献   

9.
10.
Specific antibodies against the histone H2A from calf thymus were generated by injecting rabbits with complexes: histone H2A-RNA with a protein to RNA ratio of 3:1. In the microcomplement fixation assay the antibodies against the histone H2A from calf thymus immuno-reacted with the histone H2A from calf thymus but not with H2A from Physarum polycephalum. The histone H2A from calf thymus therefore appears to have an immunological determinant(s) which does not exist in H2A from Physarum polycephalum.  相似文献   

11.
《Experimental mycology》1989,13(1):105-108
The level of histone H4 mRNA was measured during spherulation and germination of Physarum polycephalum cultures. Histone H4 mRNA is present in prespherules as well as in mature and germinating spherules. During this differentiation process the cells have a 4C or G2-phase DNA content and therefore no DNA synthesis occurs. The presence of histone mRNA in the dormant cells shows that Physarum prepares long in advance for resumption of vegetative growth.  相似文献   

12.
13.
Using a differential extraction procedure which had previously been shown to yield one nucleic acid fraction enriched in cytoplasmic RNA and another enriched in nuclear RNA, we have been able to isolate two polyadenylated RNA populations from microplasmodia of Physarum polycephalum. The poly(A)-containing RNA from the cytoplasmic-enriched fraction accounts for approximately 1.2% of the cytoplasmic nucleic acid, has a number-average nucleotide size of 1339+/- 39 nucleotides, and has been shown, in a protein-synthesizing system in vitro, to be capable of directing the synthesis of peptides which have also been shown to be synthesized in vivo by microplasmodia. The poly(A)-containing RNA from the nuclear-enriched fraction has a number-average nucleotide size of 1533 +/- 104 nucleotides and represents a mixture of cytoplasmic and nuclear adenylated RNA molecules. Based upon these observations, we have identified the polyadenylated RNA isolated from the fraction enriched in cytoplasmic nuclei acid as Physarum poly(A)-containing messenger RNA.  相似文献   

14.
15.
16.
In Physarum polycephalum several degrees of organisation of deoxyribonucleoprotein fibres were found. The complexes of histones and the DNA duplex seem to "be packed" at first into a 100 A fibre and then into a 200 A fibre of DNP. In Ph. polycephalum the electrophoretic mobilities of histone fractions 4 and 6 are comparable to that of fractions f3/f2b and f2a1 of calf thymus, resp. Histone fractions 3 and 5 move a bit faster than fractions f1 and f2a2, resp. Thus, the myxomycete P. polycephalum is similar to higher eukaryotes as concerns the ultrastructure of chromatin and electrophoretic properties of histones.  相似文献   

17.
18.
Combined studies which include, NMR spectroscopy, circular dichroism, amino acid analysis and polyacrylamide gel electrophoresis together show that the protein designated as histone H1 from Physarum polycephalum has many of the features of histone H1 derived from other sources. The molecular masses of the globular peptide and the whole molecule were found to be 9000 +/- 1000 Da and 33000 +/- 3000 Da respectively. NMR melting experiments showed that the half-melt temperature was 53 +/- 1 degree C and the enthalpy of melting was 100 kJ . mol-1. Unusual facets of the molecule are the relatively large numbers of histidine residues (6 or 7) and the mono, di and trimethylation of some of the lysines, the major type of modification being trimethylation of 9 +/- 2 residues. The conditions necessary for structuring Physarum H1 are not the same as the histone H1 from calf thymus. It is suggested that titration of the histidine residues is the most decisive step for the development of tertiary folding of the globular unit.  相似文献   

19.
20.
Spherical droplets, derived from Physarum plasmodia by incubation in 10 mM caffeine, seemed to be an excellent system for electrophysiological studies because they were large (less than or equal to 300 micrometer in diameter) and because they tolerated intracellular electrodes filled with 3 M KCl and 10 mM EDTA for a few hours. Intact plasmodia, by contrast, gave valid records for only a few minutes. Under standard conditions ([K+]o = 1 mM, [Na+]o = 5 mM, [Ca++]0 = 0.5 mM, [Mg++]o = 2 mM, and [Cl-]o = 6 mM at pH 7.0), the potential difference across droplet membranes was -80 to -120mV, interior negative. The membrane potential was only slightly sensitive to concentration changes for the above-mentioned ions, and was far negative to the equilibrium diffusion potentials calculated from the known internal contents of K, Na, Ca, Mg, and CL (29.4, 1.6, 3.7, 6.5, and 27.8 mmol/kg, respectively). Variations of external pH did have a strong influence on the membrane potential, yielding a slope of 59 mV/pH between pH 6.5 and 5.5. In this pH range, however, the equilibrium potential for H+ (assuming 6.2 less than or equal to pHi less than or equal to 7.0) was greater than 75 mV positive to the observed membrane potential. Membrane potential was directly responsive to metabolic events, being lowered by potassium cyanide, and by cooling from 25 to 12 degrees C. This ensemble of results strongly indicates that the major component of membrane potential in plasmodial droplets of Physarum is generated by an electrogenic ion pump, probably one extruding H+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号