首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Patients with acquired immunodeficiency syndrome (AIDS) are often infected with a number of other heterologous viruses in addition to the initial human immunodeficiency virus (HIV) infection, and these agents could act as potential reactivating agents of latent HIV. A new antigenically distinct herpesvirus, designated human herpesvirus 6 (HHV-6), has recently been isolated from patients with AIDS and has been shown to infect a number of different human cells, specifically human T cells, B cells, and glial cells. Since these are some of the same cells that harbor the AIDS virus, it is quite important to determine any interaction between this new herpesvirus and HIV. In this report, we demonstrate that HHV-6 can trans-activate the HIV promoter in human T-cell lines as measured by the expression of the bacterial gene chloramphenicol acetyltransferase. This indicates that stimulation of HIV gene expression by HHV-6 could play a role in HIV pathogenesis.  相似文献   

3.
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of human immunodeficiency virus disease. However, the lack of suitable experimental models has hampered the elucidation of the mechanisms of HHV-6-mediated immune suppression. Here, we used ex vivo lymphoid tissue to investigate the cellular tropism and pathogenic mechanisms of HHV-6. Viral strains belonging to both HHV-6 subgroups (A and B) were able to productively infect human tonsil tissue fragments in the absence of exogenous stimulation. The majority of viral antigen-expressing cells were CD4(+) T lymphocytes expressing a nonnaive phenotype, while CD8(+) T cells were efficiently infected only with HHV-6A. Accordingly, HHV-6A infection resulted in the depletion of both CD4(+) and CD8(+) T cells, whereas in HHV-6B-infected tissue CD4(+) T cells were predominantly depleted. The expression of different cellular antigens was dramatically altered in HHV-6-infected tissues: whereas CD4 was upregulated, both CD46, which serves as a cellular receptor for HHV-6, and CD3 were downmodulated. However, CD3 downmodulation was restricted to infected cells, while the loss of CD46 expression was generalized. Moreover, HHV-6 infection markedly enhanced the production of the CC chemokine RANTES, whereas other cytokines and chemokines were only marginally affected. These results provide the first evidence, in a physiologically relevant study model, that HHV-6 can severely affect the physiology of secondary lymphoid organs through direct infection of T lymphocytes and modulation of key membrane receptors and chemokines.  相似文献   

4.
Human herpesvirus 6 (HHV-6) can activate the human immunodeficiency virus (HIV) promoter and accelerate cytopathic effects in HIV-infected human T cells. This study examines the regions of the HIV promoter required for HHV-6 transactivation in a heterogeneous population of primary human T lymphocytes with or without antigenic stimulation. Two different strains of HHV-6, GS and Z29, transactivated the HIV promoter. The GS strain transactivated the promoter in both stimulated and resting T cells, while the Z29 strain increased HIV promoter activity only in stimulated T cells. Three DNA clones containing HHV-6(GS) genomic fragments transactivated the HIV promoter in cotransfected T cells. A 21.4-kb DNA clone, pZVB70, showed the highest transactivating ability, while two other DNA fragments, pZVB10 (6.2 kb) and pZVH14 (8.7 kb), showed lower activity. One of these clones, pZVH14, activated the HIV promoter construct containing a mutation in the NF kappa B site. However, this mutated NF kappa B promoter was not transactivated during HHV-6(GS) infection or after cotransfection with pZVB70 or pZVB10. These data indicate that the NF kappa B sites of the HIV promoter are essential for its transactivation during HHV-6(GS) infection. By increasing HIV promoter activity in primary T lymphocytes, HHV-6 may consequently increase HIV replication, leading to an increase in the cytopathic effect on coinfected human T cells.  相似文献   

5.
Human herpesvirus 6 (HHV-6) is prevalent in the human population, with primary infection occurring early in life. Its predominant CD4+ T-lymphocyte tropism, its ability to activate human immunodeficiency virus type 1 (HIV-1) gene expression in vitro, and its upregulation of CD4 expression has led to speculation that HHV-6 may act as a positive cofactor in the progression of HIV infection to AIDS in individuals infected with both viruses. Previous sequencing studies of restricted regions of the 161.5-kbp genome of HHV-6 have demonstrated unequivocally that it is a member of the betaherpesvirus subgroup and have indicated that the HHV-6 genome is generally collinear with the unique long (UL) component of human cytomegalovirus (HCMV). In the work described in this report we have extended these sequencing studies by determining the primary structure of 38.5-kbp of the HHV-6 genome (genomic position 21.0 to 59.5 kbp). Within the sequenced region lie 31 open reading frames, 20 of which are homologous to positional counterparts in HCMV. Of particular significance is the identification of homologs of the HCMV UL36-38 and US22-type genes, which have been shown to encode transactivating proteins. We show that DNA sequences encoding these HHV-6 homologs were able to transactivate HIV-1 long terminal repeat-directed chloramphenicol acetyltransferase expression in cotransfection assays, thus demonstrating functional as well as structural conservation of these betaherpesvirus-specific gene products. Our data therefore confirm the close relationship between HHV-6 and HCMV and identify putative immediate-early regulatory genes of HHV-6 likely to play key roles in lytic replication and possibly also in the interactions between HHV-6 and HIV in dually infected cells.  相似文献   

6.
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.  相似文献   

7.
Herpesvirus infections can frequently lead to acute inflammation, yet the mechanisms regulating this event remain poorly understood. In order to determine some of the immunological mechanisms regulated by human herpesvirus infections, we studied the gene expression profile of lymphocytes infected with human herpesvirus 6 (HHV-6) by using a novel immunomicroarray. Our nylon-based immunomicroarray contained more than 1,150 immune response-related genes and was highly consistent between experiments. Experimentally, we found that independently of the HHV-6 strain used to infect T cells, multiple proinflammatory genes were increased and anti-inflammatory genes were decreased at the mRNA and protein levels. HHV-6 strains A and B increased expression of the genes for interleukin-18 (IL-18), the IL-2 receptor, members of the tumor necrosis factor alpha superfamily receptors, mitogen-activated protein kinase, and Janus kinase signaling proteins. As reported previously, CD4 protein levels were also increased significantly. Specific type 2 cytokines, including IL-10, its receptor, and IL-14, were downregulated by HHV-6 infection and, interestingly, amyloid precursor proteins and type 1 and 2 presenilins. Thus, T cells respond to HHV-6 infection by inducing a type 1 immune response that may play a significant role in the development and progression of diseases associated with HHV-6, including pediatric, hematologic, transplant, and neurologic disorders.  相似文献   

8.
The alpha(4) integrin antagonist natalizumab was shown to be effective in patients with immune-mediated disorders but was unexpectedly associated with JC polyomavirus associated progressive multifocal leukoencephalopathy (PML) in two multiple sclerosis (MS) and one Crohn's disease patients. Impaired immune surveillance due to natalizumab treatment may have contributed to the JCV reactivation. As HHV-6 has been suggested to play a role in MS, we asked whether this virus could also have been reactivated during natalizumab therapy. Matched sera and CSF from a limited set of MS patients treated with and without natalizumab were examined for evidence of HHV-6. In addition, we also superinfected a persistent JC virus infected glial cell with HHV-6A to determine if JC virus can be increased. Elevated serum HHV6 IgG and HHV-6A DNA was detected in the CSF of a subset of patients but not controls. We confirmed that superinfection with HHV-6 of a JC virus infected glial cells increased expression of JCV. These results support the hypothesis that treatment with natalizumab may be associated with reduced immune surveillance resulting in reactivation of viruses associated with MS pathogenesis.  相似文献   

9.
The in vitro susceptibility of several nonhuman primate species to human herpesvirus 6 (HHV-6) was investigated. Only peripheral blood mononuclear cells from chimpanzees (Pan troglodytes) were found permissive to productive infection by HHV-6, indicating that the host range of HHV-6, albeit limited, may not be restricted to Homo sapiens. However, natural HHV-6 infection in chimpanzees, as well as in the other species tested, could not be documented by serological analysis. As previously observed with human cells, HHV-6 infection of chimpanzee peripheral blood mononuclear cells was highly cytopathic and the infected cells exhibited phenotypic features of activated T lymphocytes. Although in humans the majority of HHV-6-infected lymphocytes displayed the CD4 antigen, in chimpanzees a mixed CD4+ and CD8+ phenotype was observed. HHV-6 was also shown to productively coinfect individual chimpanzee T cells with human immunodeficiency virus type 1, resulting in an accelerated induction of cytopathicity. In light of these findings, we propose the utilization of chimpanzees as a potential animal model system to investigate the in vivo interaction between HHV-6 and human immunodeficiency virus type 1 and its relevance to the development of acquired immune deficiency syndrome.  相似文献   

10.
11.
Within the brain, glial cells are target cells for human cytomegalovirus (HCMV) and HIV. We infected cultures of unstimulated human microglial cells and astrocytes of embryonic origin and of monocyte-derived macrophages (MDM) with HCMV strain AD169 and observed down-regulation of the plasma membrane expression of CCR5 in the three cell types, and of CXCR4 and CD4 in microglial cells only. Cells were then coinfected simultaneously or at a 24-h interval with both AD169 and two different HIV-1 monocytotropic strains. HCMV late antigens and HIV-1 tat protein colocalized in the cytoplasm of 5-10% of microglia and MDM. p24 antigen levels decreased 10- to 40-fold in supernatants of MDM and the reduction was greater when HCMV infection was performed 24 h before HIV-1 infection. These data suggest that HCMV-induced reduction in the cell-surface expression of the primary co-receptor of HIV-1 monocytotropic strains may impair the ability of HIV to infect these cells.  相似文献   

12.
Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) has been implicated as a key factor in virus-associated neoplasia because of its proproliferative and survival effects and also in view of its angiogenic properties. A major difference between vIL-6 and human IL-6 (hIL-6) is that vIL-6, uniquely, is largely retained and can signal intracellularly. While vIL-6 is generally considered to be a lytic gene, several reports have noted its low-level expression in latently infected primary effusion lymphoma (PEL) cultures, in the absence of other lytic gene expression. Thus, intracellular autocrine signal transduction by the viral cytokine may be of particular relevance to the growth and survival of latently infected cells and to pathogenesis. Here we report that most intracellular vIL-6 is located in the endoplasmic reticulum (ER), signals via the gp130 signal transducer in this compartment, and does so independently of the gp80 α-subunit of the IL-6 receptor, required for hIL-6 signal transduction. Signaling and biological assays incorporating ER-retained vIL-6 and hIL-6 confirmed vIL-6 activity, specifically, in this compartment. Knockdown of vIL-6 expression in PEL cells led to markedly reduced cell growth in normal culture, independently of extracellular cytokines. This could be reversed by reintroduction via virus vector of exclusively ER-retained vIL-6. These data indicate that in virus biology vIL-6 may act to support the growth and survival of cells latently infected with HHV-8 in an autocrine manner via intracrine signaling and that these activities may contribute to the maintenance of latently infected cells and to virus-induced neoplasia.  相似文献   

13.
We evaluated the ability of human coronaviruses to infect primary cultures of human neural cells. Double immunofluorescence with antibodies to virus and cell markers showed infection of fetal astrocytes and of adult microglia and astrocytes by strain OC43. RNA amplification revealed infection of fetal astrocytes, adult microglia, and a mixed culture of adult oligodendrocytes and astrocytes by strain 229E. Infectious virus was released only from fetal astrocytes, with higher titers for OC43. Human coronaviruses have the capacity to infect some cells of the central nervous system, although infection of adult cells appears abortive.  相似文献   

14.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

15.
The astrocyte, the major glial cell in the central nervous system, may influence many aspects of inflammation and immune reactivity within the brain. We have established a model of chronically activated T lymphocytes, interacting with neural cells of diverse origin to study the complex immune regulatory system suspected to lead to neuroinflammatory diseases. We show that human astrocytes became reactive following T cell contact, secreting proinflammatory cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP). The altered MMP/TIMP system was shown to be involved in deleterious effects displayed by activated T cells towards human multipotent neural precursers by controlling their sensitivity to T cell-induced Fas-mediated apoptosis. MMP/TIMP was suspected to stabilize Fas at the cell membrane. In a model of mixed rat glial cells in primary culture (astrocytes, oligodendrocytes), activated T lymphocytes induced the collapse of processes and the death of immature oligodendrocytes. These effects were associated with upregulation of Fas at the cell surface of oligodendrocytes and secretion of MMP and TIMP by astrocytes. By amplifying the expression of inflammatory molecules including the MMP/TIMP system, astrocytes appear to be a crucial relay in the deleterious molecular cascade triggered by activated T lymphocytes. Detection of altered MMP/TIMP in patients suffering from myelopathy associated with retroviral infection (HTLV-1) strongly suggests its involvement in the physiopathological process of the disease.  相似文献   

16.
Little is known about what effector populations are associated with the control of human herpesvirus 8 (HHV-8) infection in vivo. We compared T lymphocyte subsets among HIV-HHV-8+ and HIV-HHV-8- infected human individuals. alphabeta+ T cells from HHV-8-infected individuals displayed a significantly higher percentage of differentiated effector cells among both CD4+ and CD8+ T cell subsets. HHV-8 infection was associated with significant expansion of gammadelta+ Vdelta1 T cells expressing a differentiated effector cell phenotype in peripheral blood. In vitro stimulation of PBMC from HHV-8-infected individuals with either infectious viral particles or different HHV-8 viral proteins resulted in gammadelta Vdelta1 T cell activation. In addition, gammadelta Vdelta1 T cells displayed a strong reactivity against HHV-8-infected cell lines and prevented the release of infectious viral particles following the induction of lyric replication. These data indicate that gammadelta T cells play a role in both innate and adaptive T cell responses against HHV-8 in immunocompetent individuals.  相似文献   

17.
To address whether human herpesvirus 8 (HHV-8) DNA in peripheral blood mononuclear cells (PBMCs) might be the product of latent or lytic infection and to shed light on sporadic detection of HHV-8 DNA in individuals seropositive for the virus, we studied the frequency of infected cells, total virus load, and virus load per infected cell in PBMCs from men coinfected with HHV-8 and human immunodeficiency virus (HIV), some of whom had Kaposi's sarcoma. The low frequencies of infected cells detected (fewer than one per million cells in some individuals) suggest that the prevalence of the virus in circulating leukocytes was underestimated in previous studies that employed more conventional sampling methods (single, small-volume specimens). Mean virus loads ranged from 3 to 330 copies per infected PBMC; these numbers can represent much higher loads in individual lytically infected cells (>10(3) genomes/cell) in mixtures that consist predominantly of latently (relatively few genomes) infected cells. The presence in some subjects of high HHV-8 mean genome copy numbers per infected cell, together with viral DNA being found in plasma only from subjects with positive PBMCs, supports earlier suggestions that the virus can actively replicate in PBMCs. In some individuals, mean virus loads were less than 10 genomes per infected cell, suggesting a tightly controlled purely latent state. HHV-8 genome copy numbers are substantially higher in latently infected cells derived from primary effusion lymphomas; thus, it appears that HHV-8 is able to adopt more than one latency program, perhaps analogous to the several types of Epstein-Barr virus latency.  相似文献   

18.
Human herpesvirus 6 (HHV-6) is a lymphotropic betaherpesvirus that productively infects T cells and monocytes. HHV-6 isolates can be differentiated into two groups, variants A and B (HHV-6A and HHV-6B). Here, we show a functional difference between HHV-6A and -6B in that HHV-6A induced syncytium formation of diverse human cells but HHV-6B did not. The syncytium formation induced by HHV-6A was observed 2 h after infection; moreover, it was found in the presence of cycloheximide, indicating that HHV-6A induced fusion from without (FFWO) in the target cells. Furthermore, the fusion event was dependent on the expression of the HHV-6 entry receptor, CD46, on the target cell membrane. In addition, we determined that short consensus repeat 2 (SCR2), -3, and -4 of the CD46 ectodomain were essential for the formation of the virus-induced syncytia. Monoclonal antibodies against glycoproteins B and H of HHV-6A inhibited the fusion event, indicating that the syncytium formation induced by HHV-6A required glycoproteins H and B. These findings suggest that FFWO, which HHV-6A induced in a variety of cell lines, may play an important role in the pathogenesis of HHV-6A, not only in lymphocytes but also in various tissues, because CD46 is expressed ubiquitously in human tissues.  相似文献   

19.
BackgroundChronic activation of glial cells contributes to neurodegenerative diseases. Cytochrome c (CytC) is a soluble mitochondrial protein that can act as a damage-associated molecular pattern (DAMP) when released into the extracellular space from damaged cells. CytC causes immune activation of microglia in a toll-like receptor (TLR) 4-dependent manner. The effects of extracellular CytC on astrocytes are unknown. Astrocytes, which are the most abundant glial cell type in the brain, express TLR 4 and secrete inflammatory mediators; therefore, we hypothesized that extracellular CytC can interact with the TLR 4 of astrocytes inducing their release of inflammatory molecules and cytotoxins.MethodExperiments were conducted using primary human astrocytes, U118 MG human astrocytic cells, BV-2 murine microglia, and SH-SY5Y human neuronal cells.ResultsExtracellularly applied CytC increased the secretion of interleukin (IL)-1β, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-12 p70 by cultured primary human astrocytes. Anti-TLR 4 antibodies blocked the CytC-induced secretion of IL-1β and GM-CSF by astrocytes. Supernatants from CytC-activated astrocytes were toxic to human SH-SY5Y neuronal cells. We also demonstrated CytC release from damaged glial cells by measuring CytC in the supernatants of BV-2 microglia after their exposure to cytotoxic concentrations of staurosporine, amyloid-β peptides (Aβ42) and tumor necrosis factor-α.ConclusionCytC can be released into the extracellular space from damaged glial cells causing immune activation of astrocytes in a TLR 4-dependent manner.General significanceAstrocyte activation by CytC may contribute to neuroinflammation and neuronal death in neurodegenerative diseases. Astrocyte TLR 4 could be a potential therapeutic target in these diseases.  相似文献   

20.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号