首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines.

Methods

LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival.

Results

Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217?cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217?cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217?cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM expression but did not affect radiosensitivity in LM217. Under hypoxia and nutrient starvation, HIF-1α expression was suppressed and glycogen storage was reduced.

Conclusion

Our data suggest that AMPK regulates ATM expression and partially regulates radiosensitivity under hypoxia and nutrient starvation. The molecular mechanism underlying the induction of ATM expression by AMPK remains to be elucidated.  相似文献   

2.
The variability of blood lymphocyte reaction on the adaptive irradiation (0.05 Gy at first, then 1.0 Gy 5 h later) was investigated by micronuclei assay. Blood samples were obtained from 700 children. It was shown that in all groups studied there were children with enhanced radiosensitivity ("radiosensitivity syndrome"-RS) after exposure to adaptive low dose of radiation. The radiosensitivity syndrome occurred more often in groups of ill children; part of them was characterized by the enhanced blood content of immunoglobulin E, enhanced level of T helpers and T suppressors. A high spontaneous level of lymphocytes with micronucleus is a factor of radiosensitivity formation. The possible factors resulted in radiosensitivity syndrome are discussed.  相似文献   

3.
With the development of precision medicine, searching for potential biomarkers plays a major role in personalized medicine. Therefore, how to predict radiosensitivity to improve radiotherapy is a burning question. The definition of radiosensitivity is complex. Radiosensitive gene/biomarker can be useful for predicting which patients would benefit from radiotherapy. The discovery of radiosensitivity biomarkers require multiple pieces of evidence. A prediction model of breast cancer radiosensitivity based on six genes was established. We had put forward some supplements on the basis of the present study. We found that there were no differences between high- and low-risk scores in the non-radiotherapy group. Patients who received radiotherapy had a significantly better overall survival than non-radiotherapy patients in the predicted low-risk score patients. Furthermore, there was no difference between radiotherapy group and non-radiotherapy group in the high-risk score group. Those results firmly supported the prediction model of radiosensitivity. In addition, building a radiosensitivity prediction model was systematically discussed. Genes of model could be screened by different methods, such as Cox regression analysis, Lasso Cox regression method, random forest algorithm and other methods. In the future, precision radiotherapy might depend on the combination of multi-omics data and high dimensional image data.  相似文献   

4.
The effects of cancer predisposition and increased tumorigenic radiosensitivity of the predisposed genotypes on radiation cancer risks (in the general population and in sisters and first cousins of affected probands) are studied using an autosomal dominant model of cancer predisposition and radiosensitivity. The model assumes that the predisposing alleles, which confer enhanced tumorigenic radiosensitivity, are incompletely penetrant. In addition, the model also allows for sporadic cancers, unrelated to the predisposing locus. The predictions of the model are illustrated using current estimates of BRCA1 mutant gene frequencies; the estimates of the strength of predisposition and radiosensitivity differentials used are based on animal and human studies. It is shown that, unless both the strength of predisposition and radiosensitivity differential are large (say, > 100-fold in comparison with normal homozygotes), (i) the effect of risk heterogeneity on cancer risk is marginal; (ii) dose-dependent radiation effect remains virtually the same as in a homogeneous irradiated population that has no predisposed subgroups; (iii) for the same radiation dose, relatives of affected probands show an enhancement of cancer risks; and (iv) most extra cancers in relatives can be attributed to radiosensitivity differentials. This simple model can give an upper bound of the effect of risk heterogeneity on radiation-induced breast cancer risks even when the cumulative breast cancer risk is age-dependent. Further, our model predicts that the benefits of mammography outweigh the risks.  相似文献   

5.
The authors have revealed a positive and statistically significant correlation between the sum of T-"pure" and T-rich pyrimidine DNA clusters and radiosensitivity of animals of different species. It was demonstrated that the share of a DNA fraction rich in AT-pairs and denaturing within the temperature range from 55 to 75 degrees increases with increasing specific radiosensitivity of animals.  相似文献   

6.
The dependence of the radiosensitivity of bacteria (the wild type, superresistant and rec-mutants) on linear energy transfer (LET) is considered. A nonformal model of inactivation of different bacterial mutants has been developed on the basis of the experimental data available. The concept of "metastable siles" (MS) is introduced. MS are peculliar DNA lesions arising from the occurrence of large nucleolytic gaps on both strands of DNA. Different mechanisms responsible for MS formation are considered. The kinetic equations of the model are solved and the parameters determined for both sensitive and resistant mutants.  相似文献   

7.
Is there a link between telomere maintenance and radiosensitivity?   总被引:3,自引:0,他引:3  
Several recent studies point to the possibility that telomere maintenance may constitute a potential genetic marker of radiosensitivity. For example, the human diseases ataxia telangiectasia and Nijmegen breakage syndrome, which are characterized by clinical radiosensitivity, show alterations in telomere maintenance. In addition, Fanconi's anemia patients, who are characterized by mild cellular radiosensitivity and in some cases marked clinical radiosensitivity, have altered telomere maintenance. Similarly, a correlation between telomere maintenance and cellular radiosensitivity was reported in a group of breast cancer patients. Another study demonstrated that radiosensitivity may be more pronounced in human fibroblasts with short telomeres than in their counterparts with long telomeres. Several mouse models including mice deficient in Ku, DNA-PKcs (Prkdc), Parp and Atm, all of which are radiosensitive in vivo, show clear telomere alterations. The link between telomere maintenance and radiosensitivity is also apparent in mice genetically engineered to have dysfunctional telomeres. Finally, studies using non-mammalian model systems such as C. elegans and yeast point to the link between radiosensitivity and telomere maintenance. These results warrant further investigation to identify the extent to which these two phenotypes, namely radiosensitivity and telomere maintenance, are linked.  相似文献   

8.
There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC)-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25–8.75 Gy) and survival curves were determined by colony formation. A final slope, D0, of the survival curve for each cell line was determined to measure radiosensitivity. The D0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy). After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM) and delay of γ-H2AX foci removal (DNA strand break repair). These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.  相似文献   

9.
Mice of three strains exhibited similar changes in radiosensitivity tested with a reference to "intestinal" death: juvenile and old animals were more radiosensitive. No age-related changes were detected in radiosensitivity of stem cells of the small intestine epithelium estimated with a reference to average lethal dose D0.  相似文献   

10.
It was shown that the dose--effect curves describing the radiosensitivity of CFUc of the bone marrow irradiated in vitro (0.04-3.7 Gy) and treated with normal rabbit serum (NRS) and anti-mouse-brain serum (AMBS) has two differently sloping portions indicating that two CFUc populations differing in radiosensitivity are present in the bone marrow. D0 was 0.93 Gy after irradiation with doses of 0.04-0.75 Gy and treatment with NRS, and 0.33 Gy after incubation of the bone marrow with AMBS. The addition of thymus cells "straightened" the dose--effect curve for the bone marrow treated with AMBS: in this case D0 was 1.81 Gy exceeding considerably the values of D0 for intact bone marrow. The CFUc population is suggested to be heterogeneous in radiosensitivity.  相似文献   

11.

Background

The identification of polymorphisms and/or genes responsible for an organism's radiosensitivity increases the knowledge about the cell cycle and the mechanism of the phenomena themselves, possibly providing the researchers with a better understanding of the process of carcinogenesis.

Aim

The aim of the study was to develop a data analysis strategy capable of discovering the genetic background of radiosensitivity in the case of small sample size studies.

Results

Among many indirect measures of radiosensitivity known, the level of radiation-induced chromosomal aberrations was used in the study. Mathematical modelling allowed the transformation of the yield-time curve of radiation-induced chromosomal aberrations into the exponential curve with limited number of parameters, while Gaussian mixture models applied to the distributions of these parameters provided the criteria for mouse strain classification. A detailed comparative analysis of genotypes between the obtained subpopulations of mice followed by functional validation provided a set of candidate polymorphisms that might be related to radiosensitivity. Among 1857 candidate relevant SNPs, that cluster in 28 genes, eight SNPs were detected nonsynonymous (nsSNP) on protein function. Two of them, rs48840878 (gene Msh3) and rs5144199 (gene Cc2d2a), were predicted as having increased probability of a deleterious effect. Additionally, rs48840878 is capable of disordering phosphorylation with 14 PKs. In silico analysis of candidate relevant SNP similarity score distribution among 60 CGD mouse strains allowed for the identification of SEA/GnJ and ZALENDE/EiJ mouse strains (95.26% and 86.53% genetic consistency respectively) as the most similar to radiosensitive subpopulatio

Conclusions

A complete step-by-step strategy for seeking the genetic signature of radiosensitivity in the case of small sample size studies conducted on mouse models was proposed. It is shown that the strategy, which is a combination of mathematical modelling, statistical analysis and data mining methodology, allows for the discovery of candidate polymorphisms which might be responsible for radiosensitivity phenomena.
  相似文献   

12.
13.
Ma X  Yang L  Xiao L  Tang M  Liu L  Li Z  Deng M  Sun L  Cao Y 《PloS one》2011,6(11):e24647

Background

The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice.

Results

In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells.

Conclusions

Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs.  相似文献   

14.
At present micronucleus data cannot predict cellular radiosensitivity. The inclusion of data from apoptosis and abnormal morphology has not entirely resolved this problem. Here, we assess the probability of cell death arising from events other than micronucleation, apoptosis and abnormal morphology (i.e. lesions not detected by these damage assays) P(oe), for its ability to reflect intrinsic cellular radiosensitivity. Analysis of data from 17 cell lines used in two separate studies, spanning a wide range of radiosensitivity (0.09相似文献   

15.
This review highlights the phenomenon of low-dose hyper- radiosensitivity (HRS), an effect in which cells die from excessive sensitivity to small single doses of ionizing radiation but become more resistant (per unit dose) to larger single doses. Established and new data pertaining to HRS are discussed with respect to its possible underlying molecular mechanisms. To explain HRS, a three-component model is proposed that consists of damage recognition, signal transduction and damage repair. The foundation of the model is a rapidly occurring dose-dependent pre-mitotic cell cycle checkpoint that is specific to cells irradiated in the G2phase. This checkpoint exhibits a dose expression profile that is identical to the cell survival pattern that characterizes HRS and is probably the key control element of low-dose radiosensitivity. This premise is strengthened by the recent observation coupling low- dose radiosensitivity of G2-phase cells directly to HRS. The putative role of known damage response factors such as ATM, PARP, H2AX, 53BP1 and HDAC4 is also included within the framework of the HRS model.  相似文献   

16.
A mathematical model is developed which describes the dynamics of radiation-induced mortality of a non-homogeneous (in radiosensitivity) mammalian population. It relates statistical biometric functions with statistical and dynamic characteristics of a critical system in organism of specimens composing this population. The model involves two types of distributions, the normal and the log-normal, of population specimens with respect to the radiosensitivity of the critical system cells. This approach suggests a new pathway in developing the methods of radiation risk assessment.  相似文献   

17.
The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such understanding is critical in extrapolating databases between cellular response, animal carcinogenesis and human carcinogenesis, and we suggest that the SAO model is a useful tool for such extrapolation.  相似文献   

18.
Published data on the in vitro radiosensitivity of 46 nontransformed fibroblasts of different genetic origins studied in plateau phase with immediate or delayed plating were used to investigate to what extent potentially lethal damage repair capacity is related to intrinsic radiosensitivity (i.e., irradiated in exponential growth phase). While most of the survival curve analysis is conducted in terms of D0, Dq, and the mean inactivation dose D, some of the data are also discussed in terms of the linear-quadratic model parameter alpha. Using D it is shown that: (i) the radiosensitivity of human fibroblasts in exponential growth phase does not significantly differ from that of plateau-phase fibroblasts with immediate plating; (ii) the radiosensitivity of plateau-phase cells with delayed plating is correlated to the radiosensitivity of cells with immediate plating: the more radioresistant the cell strain in exponential growth phase, the higher its repair capacity; (iii) the repair capacity of the cell strains is related to their genetic origin. In conclusion, we suggest that the survival curve of growing cells depends on the repair capacity of the cells.  相似文献   

19.
On the basis of the data obtained from 61 cases of accidental exposure (0.1-12.5 Gy) at the Chernobyl A.P.S. the kinetics of acute radiation bone-marrow syndrome was analyzed and radiosensitivity of the entire spectrum of human granulocytic compartment cells was estimated. The radiosensitivity estimates were made by a "functional" criterion, developed by the authors, which was based on the comparative ability of irradiated and nonirradiated bone marrow cells of different maturity to produce peripheral blood neutrophils. Changes were found in physiology of myeloid cells during their maturation: the maturation mechanism, for cells of the committed pool, was "attached" to the division process, whereas these processes were independent for cells of the dividing and maturing pool. It is once again confirmed that the transit time of a maturing myeloid cell, to begin with the primarily committed one and to end with a peripheral blood neutrophil, is not constant and lasts normally for 32 days.  相似文献   

20.
A relationship between telomeres and radiosensitivity has been established by several studies based on non-mammalian model systems, mouse models, and few human genetic diseases. However, the relationship has not been proven in human carcinoma cells, which have more clinical significance than these other models. The present study aims to determine whether telomere length is related to radiosensitivity in human carcinoma cells, and to examine the influence of tissue or genetic background. Two HEp-2 larynx squamous carcinoma cell lines, eight hepatocellular carcinoma cell lines, and five breast cancer cell lines were used. Telomere length was determined by terminal restriction fragment (TRF) Southern blot analysis and cell survival was measured by a colony-forming assay. Our results indicated that there was a significant negative correlation of telomere length and radiosensitivity in the same tissue-derived cell lines, with or without the same genetic background. Thus, telomere length may be used as a promising tool to predict the radiosensitivity of human carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号