首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant inbred lines of the International Triticeae Mapping Initiative (ITMI) mapping population were used to localize genetic loci that affect traits related to the free-threshing habit (percent threshability, glume tenacity, and spike fragility) and to spike morphology (spike length, spikelet number, and spike compactness) of wheat (Triticum aestivum L.). The ITMI population was planted in three environments during 1999 and 2000, and phenotypic and genotypic data were used for composite interval mapping. Two quantitative trait loci (QTL) that consistently affected threshability-associated traits were localized on chromosomes 2D and 5A. Coincident QTL on the short arm of 2D explained 44% of the variation in threshability, 17% of the variation in glume tenacity, and 42% of the variation in rachis fragility. QTL on chromosomes 2D probably represent the effect of Tg, a gene for tenacious glumes. Coincident QTL on the long arm of 5A explained 21% and 10% of the variation in glume tenacity and rachis fragility, respectively. QTL on 5A are believed to represent the effect of Q. Overall, free-threshing-related characteristics were predominantly affected by Tg and to a lesser extent by Q. Other QTL that were significantly associated with threshability-related traits in at least one environment were localized on chromosomes 2A, 2B, 6A, 6D, and 7B. Four QTL on chromosomes 1B, 4A, 6A, and 7A consistently affected spike characteristics. Coincident QTL on the short arm of chromosome 1B explained 18% and 7% of the variation in spike length and spike compactness, respectively. QTL on the long arm of 4A explained 11%, 14%, and 12% of the variation in spike length, spike compactness, and spikelet number, respectively. A QTL on the short arm of 6A explained 27% of the phenotypic variance for spike compactness, while a QTL on the long arm of 7A explained 18% of the variation in spikelet number. QTL on chromosomes 1B and 6A appear to affect spike dimensions by modulating rachis internode length, while QTL on chromosomes 4A and 7A do so by affecting the formation of spikelets. Other QTL that were significantly associated with spike morphology-related traits, in at least one environment, were localized on chromosomes 2B, 3A, 3D, 4D, and 5A.Communicated by J. Dvorak  相似文献   

2.
3.
The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon — T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.  相似文献   

4.
The origin of spelt and free-threshing hexaploid wheat   总被引:1,自引:0,他引:1  
It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.  相似文献   

5.
Segments of young inflorescences of Triticum aestivum cv. Chinese Spring (CS), its F1 hybrids with Agropyron trachycaulum and A. scirpeum and backcross derivatives with A. yezoense, A. intermedium and A. junceum, and of a A. yezoense x T. aestivum cv. Wichita hybrid were cultured. Different parts of young spikelets of A. trachycaulum x CS F1 and A. yezoense x Wichita F1 's were also cultured. Percent callus induction was lower in wheat than in the wheat-Agropyron hybrids or backcross derivatives. Percent callus induction from different organs in both hybrids was in the descending order of whole spikelet, spikelet without glumes, rachis, and glumes. No plants could be regenerated from calli of wheat and backcross derivatives except those of CS x A. intermedium combination. Callus induction in hybrids varied from 54 to 84% and plant regeneration from 14 to 31%. The regenerants required no vernalization. Variants including one with top-dense spikes and another with elongated spikelets were recovered. Out of eight A. trachycaulm x CS hybrid regenerants, one had anthers and stigma as opposed to neutral flowers of the original hybrid.  相似文献   

6.
CS mice show a free-running period (κ) longer than 24 h and rhythm splitting in constant darkness (DD). These features in behavioral circadian rhythms are distinctive as compared with other inbred strains of mice, which exhibit robust free-running rhythms with κ shorter than 24 h. To identify the genes affecting κ, quantitative trait locus (QTL) analysis was initially conducted by using 289 F2 mice derived from a cross between CS and C57BL/6J strain. A suggestive QTL (LOD = 3.71) with CS allele increasing κ was detected on the distal region of Chromosome (Chr) 19. Next, using 192 F2 mice from a cross between CS and MSM strain, the presence of the QTL on Chr 19 was examined, and we confirmed the QTL at the genome-wide significant level (LOD = 4.61 with 10.4% of the total variance explained). This QTL was named long free-running period (Lfp). Three other suggestive QTLs (LOD = 3.24–4.28) were mapped to the midportion of Chr 12 in (CS×C57BL/6J)F2 mice, and to the proximal and middle region of Chr 19 in (CS×MSM)F2 mice, respectively, of which, CS alleles for two QTLs on Chr 19 have the effect of lengthening κ. None of these QTLs were mapped to the chromosomal regions of previously described QTLs for κ and known clock genes (Clock, mPer1, Bmal1, mCry1, mCry2, mTim, and Csnk1e). Received: 5 July 2000 / Accepted: 5 December 2000  相似文献   

7.
Using gliadins as genetic markers, Triticum spelta L. var. caeruleum accessions were analyzed to identify genetic control of the dark color of glumes. The research material was F2 and BC1 plants from crosses between spelt accessions and white-glumed common wheat varieties. The segregation for glume color fitted the monogenic control of the trait. The electrophoretic analysis of gliadins in grains from the hybrid plants has shown that the Gli-Alj* allele in the T. spelta var. caeruleum accessions is linked to the allele for the dark (black) color of glumes at the Rg-A1 locus.  相似文献   

8.
The use of resistant cultivars is the most effective method for controlling sudden death syndrome (SDS), caused by Fusarium solani f. sp. glycines (FSG) (syn. Fusarium virguliforme Akoi, O’Donnell, Homma and Lattanzi), in soybean [Glycine max (L.) Merr.]. Previous research has led to the identification of soybean genotypes with partial resistance to SDS and quantitative trait loci (QTL) controlling this resistance. The objective of our study was to map QTL conferring SDS resistance in populations developed from the crosses Ripley × Spencer (R×S-1) and PI 567374 × Omaha (P×O-1). Both Ripley and PI 567374 have partial resistance to SDS and Spencer and Omaha are susceptible. The R×S-1 population was evaluated for SDS resistance in three field environments and the P×O-1 population was greenhouse evaluated. Three SDS resistance QTL were mapped in the R×S-1 population and two in the P×O-1 population. One resistance QTL was mapped to the same location on linkage group (LG) D2 in both backgrounds. This QTL was then tested in a population of F2 plants developed through one backcross (BC1F2) in the PI 567374 source and in a population of F8 plants derived from a heterozygous F5 plant in the Ripley source. The LG D2 QTL was also significant in confirmation populations in both resistant backgrounds. Since none of the SDS resistance QTL identified in the R×S-1 or P×O-1 populations mapped to previously reported SDS resistance regions, these new QTL should be useful sources of SDS resistance for soybean breeders.  相似文献   

9.
The stele (root vascular cylinder) in plants plays an important role in the transport of water and nutrients from the root to the shoot. A quantitative trait locus (QTL) on rice chromosome 9 that controls stele transversal area (STA) was previously detected in an F3 mapping population derived from a cross between the lowland cultivar ‘IR64’, with a small STA, and the upland cultivar ‘Kinandang Patong’, with a large STA. To identify the gene(s) underlying this QTL, we undertook fine mapping of the locus. We screened eight plants from BC2F3 lines in which recombination occurred near the QTL. Progeny testing of BC2F4 plants was used to determine the genotype classes for the QTL in each BC2F3 line. Accordingly, the STA QTL Sta1 (Stele Transversal Area 1) was mapped between the InDel markers ID07_12 and ID07_14. A candidate genomic region for Sta1 was defined more precisely between markers RM566 and RM24334, which delimit a 359-kb interval in the reference cultivar ‘Nipponbare’. A line homozygous for the ‘Kinandang Patong’ allele of Sta1 had an STA approximately 28.4% larger than that of ‘IR64’. However, Sta1 did not influence maximum or total root length, suggesting that this QTL specifically controls STA.  相似文献   

10.
Cercospora leaf spot (CLS) caused by the fungus Cercospora canescens Illis & Martin is a serious disease in mungbean (Vigna radiata (L.) Wilczek), and disease can reduce seed yield by up to 50%. We report here for the first time quantitative trait loci (QTL) mapping for CLS resistance in mungbean. The QTL analysis was conducted using F2 (KPS1 × V4718) and BC1F1 [(KPS1 × V4718) × KPS1] populations developed from crosses between the CLS-resistant mungbean V4718 and CLS-susceptible cultivar Kamphaeng Saen 1 (KPS1). CLS resistance in F2 populations was evaluated under field conditions during the wet seasons of 2008 and 2009, and resistance in BC1F1 was evaluated under field conditions during the wet season in 2008. Seven hundred and fifty-three simple sequence repeat (SSR) markers from various legumes were used to assess polymorphism between KPS1 and V4718. Subsequently, 69 polymorphic markers were analyzed in the F2 and BC1F1 populations. The results of segregation analysis indicated that resistance to CLS is controlled by a single dominant gene, while composite interval mapping consistently identified one major QTL (qCLS) for CLS resistance on linkage group 3 in both F2 and BC1F1 populations. qCLS was located between markers CEDG117 and VR393, and accounted for 65.5–80.53% of the disease score variation depending on seasons and populations. An allele from V4718 increased the resistance. The SSR markers flanking qCLS will facilitate transferral of the CLS resistance allele from V4718 into elite mungbean cultivars.  相似文献   

11.
Linolenic acid (LN) in soybean (Glycine max L. Merr.) seed mainly contributes to the undesirable odors and flavors commonly associated with poor oil quality. LN deposition at various stages of soybean seed development had not been reported by 2010. The objects of this study were (1) to identify and measure quantitative trait loci (QTL) underlying LN content and (2) to estimate the QTL effects expressed from earlier seed developmental stages to drying seed of soybean. One hundred and twenty-five F5:8 and F5:9 recombinant inbred lines derived from the cross of soybean cultivars ‘Hefeng 25’ and ‘Dongnong L5’ were used for the identification of QTL underlying LN content from the 37 day (D) to 86D stages after flowering, at Harbin in 2008 and 2009. QTL × Environment interactions (QE) effects were evaluated using a mixed genetic model (Zhu in J Zhejiang Univ (Natural Science) 33:327–335, 1999). Twelve unconditional QTL and 12 conditional QTL associated with LN content were identified at different developmental stages. Most of the QTL explained <10% of phenotypic variation of LN content. Unconditional QTL QLNF-1, QLNC2-1, QLND1b-1, QLNA2-1 and QLNH-1 influenced LN content across different development stages and environments. Conditional QTL QLNF-1, QLNC2-1 and QLNH-1 were identified in multiple developmental stages and environments. Conditional and unconditional QTL clustered in neighboring intervals on linkage groups A2, C2 and D1b. Ten QTL with conditional additive main effects (a) and/or conditional additive × environment interaction effects (ae) at specific developmental stage were identified on nine linkage groups. Of them, six QTL only possessed additive main effects and seven QTL had significant ae effects in different developmental stages. A total of 13 epistatic pairwise QTL were identified by conditional mapping in different developmental stages. Two pairs of QTL only showed aa effects and five pairs of QTL only showed aae effects at different developmental stages. QTL with aa effects, as well as their environmental interaction effects, appeared to vary at different developmental stages.  相似文献   

12.
Mature DBA/2J (D2) mice are very sensitive to seizures induced by various chemical and physical stimuli, whereas C57BL/6J (B6) mice are relatively seizure resistant. We have conducted a genome-wide search for quantitative trait loci (QTLs) influencing the differential sensitivity of these strains to kainic acid (KA)-induced seizures by studying an F2 intercross population. Parental, F1, and F2 mice (8–10 weeks of age) were injected subcutaneously with 25 mg/kg of KA and observed for 3 h. Latencies to focal and generalized seizures and status epilepticus were recorded and used to calculate an overall seizure score. Results of seizure testing indicated that the difference in susceptibility to KA-induced seizures between D2 and B6 mice is a polygenic phenomenon with at least 65% of the variance due to genetic factors. First-pass genome screening (10-cM marker intervals) in F2 progeny (n = 257) documented a QTL of moderate effect on Chromosome (Chr) 1 with a peak LOD score of 5.5 (17% of genetic variance explained) localized between D1Mit30 and D1Mit16. Provisional QTLs of small effect were detected on Chr 11 (D11Mit224D11Mit14), 15 (D15Mit6D15Mit46) and 18 (D18Mit9D18Mit144). Multiple locus models generally confirmed the Mapmaker/QTL results and also provided evidence for another QTL on Chr 4 (D4Mit9). Multilocus analysis of seizure severity suggested that additional loci on Chrs 5 (D5Mit11), 7 (D7Mit66), and 15 (D15Nds2) might also contribute to KA-induced seizure response. Overall, our results document a complex genetic determinism for KA-induced seizures in these mouse strains with contributions from as many as eight QTLs. Received: 16 April 1996 / Accepted: 21 October 1996  相似文献   

13.
In hybrid breeding the performance of lines in hybrid combinations is more important than their performance per se. Little information is available on the correlation between individual line and testcross (TC) performances for the resistance to European corn borer (ECB, Ostrinia nubilalis Hb.) in maize (Zea mays L.). Marker assisted selection (MAS) will be successful only if quantitative trait loci (QTL) found in F2 derived lines for ECB resistance are still expressed in hybrid combinations. The objectives of our study were: (1) to identify and characterize QTL for ECB resistance as well as agronomic and forage quality traits in a population of testcrossed F2:3 families; (2) to evaluate the consistency of QTL for per se and TC performances; and (3) to determine the association between per se and TC performances of F2:3 lines for these traits. Two hundred and four F2:3 lines were derived from the cross between maize lines D06 (resistant) and D408 (susceptible). These lines were crossed to D171 and the TC progenies were evaluated for ECB resistance and agronomic performance in two locations in 2000 and 2001. Using these TC progenies, six QTL for stalk damage rating (SDR) were found. These QTL explained 27.4% of the genotypic variance in a simultaneous fit. Three QTL for SDR were detected consistently for per se and TC performance. Phenotypic and genotypic correlations were low for per se and TC performance for SDR. Correlations between SDR and quality traits were not significant. Based on these results, we conclude that MAS will not be an efficient method for improving SDR. However, new molecular tools might provide the opportunity to use QTL data as a first step to identify genes involved in ECB resistance. Efficient MAS procedures might then be based on markers designed to trace and to combine specific genes and their alleles in elite maize breeding germplasm.Communicated by G. Wenzel  相似文献   

14.
Li Z  Peng T  Xie Q  Han S  Tian J 《Journal of genetics》2010,89(4):409-415
Effective tiller number is one of the most important traits for wheat (Triticum aestivum L.) yield, but the inheritance of tillering is poorly understood. A set of 168 doubled haploid (DH) lines derivatives of a cross between two winter wheat cultivars (Huapei 3 and Yumai 57), and an immortalized F2 (IF2) population generated by randomly permutated intermating of these DHs were investigated, and QTLs of tillering related to the maximum tillering of pre-winter (MTW), maximum tillering in spring (MTS), and effective tillering in harvest (ETH) were mapped. Phenotypic data were collected for the two populations from two different environments. Using inclusive composite interval mapping (ICIM), a total of 9 and 18 significant QTL were detected across environments for tillering in the DH and IF2 populations, respectively. Four QTLs were common between two populations. A major QTL located on the 5D chromosome with the allele originating from Yumai 57 was detected and increased 1.92 and 3.55 tillers in MTW and MTS, respectively. QTLs (QMts6D, QEth6D) having a neighbouring marker interval at Xswes679.1 and Xcfa2129 on chromosome 6D was detected in MTS and ETH. These results provide a better understanding of the genetic factors for selectively expressing the control of tiller number in different growth stages and facilitate marker-assisted selection strategy in breeding.  相似文献   

15.
Abstract Previous work identified a tail length QTL on Chromosome (Chr) 1 in an F2 population of C57BL/6J × DBA/2J mice. The goals of the present study were to (1) refine the position of this QTL by additional genotyping of samples from the original study; (2) confirm the effect of this QTL by producing a partially congenic strain carrying the C57BL/6J allele against the DBA/2J background; and (3) examine the effect of the QTL on skeletal dimensions. The presence of the QTL was confirmed in a new F2 population (N = 431) derived from the partially congenic strain, and estimates of its additive effects were similar to those from the original F2 population (N = 901) in both sexes, i.e., the C57BL/6J chromosomal segment increased tail length, the additive effect (half the difference between homozygotes) being 0.5–0.8 standard deviations. The QTL region was more than halved, relative to that in the previous study, to an 8-cM region between D1Mit30 and D1Mit57. Among a subsample of individuals (N = 30) from the new F2 population that were not recombinant within the QTL region, there was a significant additive effect of the QTL on the length of the humerus, femur, tibia, mandible, scapula, pelvic girdle, and a tail bone; the direction of the effect was the same as for tail length. No significant effect was found on the number of bones in the tail or on the dimensions of the ulna, skull, or first vertebra.  相似文献   

16.
Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of 174 F2 plants was made originating from a cross between S. lycopersicum cv. Moneymaker and S. habrochaites LYC4. The population was genotyped and tested for susceptibility to grey mold using a stem bioassay. Rbcq1, a QTL reducing lesion growth (LG) and Rbcq2, a QTL reducing disease incidence (DI) were identified. Rbcq1 is located on Chromosome 1 and explained 12% of the total phenotypic variation while Rbcq2 is located on Chromosome 2 and explained 15% of the total phenotypic variation. Both QTL effects were confirmed by assessing disease resistance in two BC2S1 progenies segregating for either of the two QTLs. One additional QTL, Rbcq4 on Chromosome 4 reducing DI, was identified in one of the BC2S1 progenies. F2 individuals, homozygous for the Rbcq2 and Rbcq4 alleles of S. habrochaites showed a reduction of DI by 48%. QTLs from S. habrochaites LYC4 offer good perspectives for breeding B. cinerea resistant tomato cultivars. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
18.
19.
Grain yield is the most important and complex trait in maize. In this study, a total of 258 F9 recombinant inbred lines (RIL), derived from a cross between dent corn inbred Dan232 and popcorn inbred N04, were evaluated for eight grain yield components under four environments. Quantitative trait loci (QTL) and their epistatic interactions were detected for all traits under each environment and in combined analysis. Meta-analysis was used to integrate genetic maps and detected QTL across three generations (RIL, F2:3 and BC2F2) derived from the same cross. In total, 103 QTL, 42 pairs of epistatic interactions and 16 meta-QTL (mQTL) were detected. Twelve out of 13 QTL with contributions (R 2) over 15% were consistently detected in 3–4 environments (or in combined analysis) and integrated in mQTL. Only q100GW-7-1 was detected in all four environments and in combined analysis. 100qGW-1-1 had the largest R 2 (19.3–24.6%) in three environments and in combined analysis. In contrast, 35 QTL for 6 grain yield components were detected in the BC2F2 and F2:3 generations, no common QTL across three generations were located in the same marker intervals. Only 100 grain weight (100GW) QTL on chromosome 5 were located in adjacent marker intervals. Four common QTL were detected across the RIL and F2:3 generations, and two between the RIL and BC2F2 generations. Each of five important mQTL (mQTL7-1, mQTL10-2, mQTL4-1, mQTL5-1 and mQTL1-3) included 7–12 QTL associated with 2–6 traits. In conclusion, we found evidence of strong influence of genetic structure and environment on QTL detection, high consistency of major QTL across environments and generations, and remarkable QTL co-location for grain yield components. Fine mapping for five major QTL (q100GW-1-1, q100GW-7-1, qGWP-4-1, qERN-4-1 and qKR-4-1) and construction of single chromosome segment lines for genetic regions of five mQTL merit further studies and could be put into use in marker-assisted breeding.  相似文献   

20.
To clarify the genetic basis of extremely early heading in rice, we conducted quantitative trait locus (QTL) analyses using F2 populations from two genetically wide cross combinations, Hayamasari/Kasalath (HaF2) and Hoshinoyume/Kasalath (HoF2). Hayamasari and Hoshinoyume are extremely early-heading japonica cultivars. Photoperiod sensitivity is completely lost in Hayamasari and weak in Hoshinoyume. Three QTLs, QTL(chr6), QTL(chr7), and QTL(chr8), for days-to-heading (DTH) in HaF2 were detected on chromosomes 6, 7, and 8, respectively, and QTL(chr6) and QTL(chr7) were detected in HoF2. On the basis of the chromosomal locations, QTL(chr6), QTL(chr7), and QTL(chr8) may be likely to be Hd1, Hd4, and Hd5, respectively, which had been detected previously as QTLs for DTH in an F2 population of Nipponbare × Kasalath. Alleles of QTL(chr7) decreased DTH dramatically in both Hayamasari and Hoshinoyume, suggesting that QTL(chr7) has a major role in determining extremely early heading. In addition, allele-specific interactions were detected between QTL(chr6), QTL(chr7) and QTL(chr8). This result suggests that not only allelic differences but also epistatic interactions contribute to extremely early heading. QTL(chr8) was detected in HaF2, but not in HoF2, suggesting that it determines the difference in DTH between Hayamasari and Hoshinoyume. A major QTL was also detected in the region of QTL(chr8) in QTL analysis using an F2 population of Hayamasari × Hoshinoyume. This result supports the idea that QTL(chr8) is a major factor that determines the difference in DTH between Hayamasari and Hoshinoyume, and is involved in photoperiod sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号