首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purposes of this study were to clarify the kinetics of muscle oxygenation (Oxy-Hb, Deoxy-Hb) by near infrared spectroscopy (NIR) in the decreasing force phase, especially the pre- and post-phases of the inflection point, in sustained maximal static gripping (SSG), and to examine the relationship between kinetics of muscle oxygenation and force-decreasing parameters. The experiment was conducted on 20 male subjects aged 15-18 years. The time at the lowest Oxy-Hb value (20.5+/-5.5 s) significantly correlated with the decreasing times of forces of 40, 60 and 80% of maximal voluntary contraction (MVC), and the rate of decreasing force for 0-1 min (r=.60,.53,.49, and -.63 respectively). These parameters reflect the decreasing force based on the oxygenation deficiency into the muscle with the obstruction of the blood flow. The time of reaching the highest Deoxy-Hb value (46.8+/-15.0 s) and the regression coefficient in the Deoxy-Hb decreasing phase correlated significantly with the decrement for 1-2 min. This parameter evaluates the phase where resumption of the blood flow began, and Deoxy-Hb in the tissue was eliminated. The inflection point of the gripping force is related to the time at the highest Deoxy-Hb, and reflects the beginning and the resumption of the blood flow. The decrement for 2-3 min and the regression coefficient of post-inflection point evaluate the steady state phase of force decreasing, in which oxygen is sufficiently supplied to active muscles.  相似文献   

2.
The purpose of this study was to examine the useful measurement time when evaluating static muscle endurance by comparing various parameters during sustained static gripping for 1, 3 and 6 min. Fifteen males (mean +/- SD age 20.8 +/- 1.3 yr, height 172.9 +/- 4.6 cm, body mass 67.7 +/- 5.7 kg) and fifteen females [mean +/- SD age 20.2 +/- 0.9 yr, height 158.5 +/- 3.2 cm, body mass 55.9 +/- 4.6 kg] volunteered to participate in this study. The subjects performed the sustained static maximal grip test with a sagittal and horizontal arm position for 1, 3 and 6 min on different days. Eleven force-time parameters were selected to evaluate static muscle endurance. The trial-to-trial reliability of each measurement time of sustained static maximal gripping was very high (rxy = 0.887-0.981 (1 min), 0.912-0.993 (3 min), 0.901-0.965 (6 min)). The errors of exertion values between trials were very small (below 10%). A significant correlation was found in the following parameters: the final strength and the exponential function between 1 min and 3 min, all parameters except for the time required to reach 80% of maximal grip, the regression coefficient at post-inflection between 3 min and 6 min, and the decreasing rate between all measurement times (1 min, 3 min, and 6 min). Significant differences between the measurement times were found in all parameters except for the time to 60, 70, and 80% force decreases, and the regression coefficient of pre-inflection. There was a tendency that the longer the measurement time, the larger the decreasing force. It is suggested that for the 6 min measurement, the subjects unconsciously restrained the maximal gripping force, influenced by a psychological factor as the pain became greater. The 1 min measurement may evaluate only the remarkable decreasing phase of the decreasing force, and not evaluate the phase of an almost steady state.  相似文献   

3.
4.
Pinfish Lagodon rhomboides acclimation rates were determined by modelling changes in critical thermal minimum ( T crit min, ° C) estimates at set intervals following a temperature decrease of 3–4° C. The results showed that pinfish gained a total of 3·7° C of cold tolerance over a range of acclimation temperatures ( T acc, ° C) from (23–12° C), that cold tolerance increased with exposure time to the reduced temperature at all T acc, but that the rate of cold tolerance accruement (mean 0·14° C day−1) was independent of T acc. A highly significant ( P < 0·001) multivariate predictive model was generated that described the acclimation rates and thermal tolerance of pinfish exposed to reduction in water temperature: log10 T crit min= 0·41597 − 0·01704 T acc+ 0·04320 T plunge− 0·08376[log10 ( t + 1)], where T plunge is plunge temperature (° C) and t is the time (days). A comparison of the present data, with acclimation rate data for other species, suggests that factors such as latitude or geographic range may play a more important role than ambient temperature in determining cold acclimation rates in fishes.  相似文献   

5.
Sixteen subjects, nine women and seven men, aged between 19 and 35 years, performed three series of isometric contractions of the flexor muscles of the forearm at 40% MVC. Each series consisted of four isometric contractions sustained until exhaustion, and separated from each other by an incomplete rest interval of 5 min. The position of the arm (either the lower or the upper position) was variable according to the series. Under these conditions, study of heart rate (HR), systolic blood pressure (SBP) and limit-time showed that: HR and SBP were not affected by the arm position even when fatigue was important. For a given load with a progressive appearance of fatigue, the limit-time in female subjects was higher. In both groups, in spite of the fatigue appearing after several isometric contractions performed in the upper position, movement of the arm to the lower position was sufficient to significantly increase the time-limit of another isometric contraction at 40% MVC without concomitant increase in cardiac work.  相似文献   

6.
The aim of this study was to examine the pedal rate and chronobiological impacts on muscle activity pattern and propulsive force production during cycling. Ten male competitive cyclists performed at 06:00 and 18:00 h a submaximal exercise on a cycle ergometer at a power output which elicited 50% of their respective W(max). The exercise was divided into 4 periods lasting 5 min each during which subjects were requested to use different pedal rates (free pedal rate, 70, 90 and 120 rev min-1) in random order. The study demonstrated that, under high pedal rate, several muscles exhibited a phase advance of activity. These modifications of temporal organization of muscle activity were not sufficient to keep an identical propulsive torque pattern. Time to peak torque was delayed when pedal rate increased. The effects of circadian fluctuation on electromyographic activity were limited to a later M. rectus femoris burst end and shorter activity duration for M. tibialis anterior at 06:00 h. From the results of this study, it seems that the influence of pedal rate in the range of torque fluctuation would depend on time-of-day of testing. The decrease in torque fluctuation due to pedal rate increase is reinforced when testing in the early morning. Taking this specific variable into consideration, the chronobiological effect increases the impact of pedal rate variations.  相似文献   

7.
A dynamometer for measurement under static and dynamic conditions is presented. At different load levels, force, velocity, work and power can be measured in explosive leg extensions. Measurements on 53 subjects at different load levels (0-125.5 kg) were carried out. Peak power ranged from 2611 to 1746 W, force from 1351 to 1899 N, velocity from 1.61 to 0.89 m X s-1 and work from 329 to 605 J. Between trial correlation coefficients ranged from 0.72 to 0.95. The dynamometer is compared with others, and it is concluded that data obtained by this dynamometer have a greater practical validity.  相似文献   

8.
The purpose of this study was to examine the time-of-day effects on muscle fatigue and recovery process following an isometric fatiguing contraction. Sixteen male subjects were tested at two times (06:00h and 18:00h) and were requested to perform a sustained submaximal contraction of the elbow flexors, consisting in maintaining 40% of their absolute strength as long as they could. Isometric maximal voluntary contractions (MVC) were performed before (Pre), immediately after (Post), and up to 10min after the endurance task. Endurance time, peak torque (PT) and electromyographic (EMG) activities of the biceps brachii and triceps brachii were recorded and analysed. Results showed that under Pre-test conditions, PT developed at 18:00h was higher than at 06:00h. No time-of-day effect appears for the endurance time and EMG activities during the test. No time-of-day effect was observed on either MVC or EMG recovery. From the results of this study, it seems that both muscle fatigue and recovery process are not time-of-day dependent. We conclude that circadian rhythm of the force do not influence the evaluation of muscle capacities during a submaximal exercise corresponding at 40% of MVC.  相似文献   

9.
10.
We investigated the effects of aging on the elastic properties of lung tissue and the chest wall, simultaneously quantifying the contribution of each component to static inspiratory muscle work in resting and exercising adults. We further evaluated the interaction of aging and habitual physical activity on respiratory mechanics. Static lung volumes and elastic properties of the lung and chest wall (pressure-volume relaxation maneuvers) in 29 chronically sedentary and 29 habitually active subjects, grouped by age, were investigated: young (Y, 20-30 years), middle-aged (M, 40-50 years), and older (O, >60 years). Using static pressure-volume data, we computed the elastic work of breathing (joules per liter, J.l(-1)), including inspiratory muscle work, over resting and exercising tidal volume excursions. Elastic work of the lung (Y = 0.79 +/- 0.05; M = 0.47 +/- 0.05; O = 0.43 +/- 0.05 J.l(-1)) and chest wall (Y = -0.49 +/- 0.06; M = -0.12 +/- 0.07; O = 0.04 +/- 0.05 J.l(-1) ) changed significantly with age (P < 0.05). With aging, a parallel displacement of the chest wall pressure-volume curve resulted in a shift from energy being stored primarily during expiration to energy storage during inspiration, and driving expiration, both at rest and during exercise. Although deviating significantly from young adults, this did not significantly elevate static inspiratory muscle work but resulted in a redistribution of the tissues on which this work was performed and the phase of the respiratory cycle in which it occurred. Nevertheless, static inspiratory muscle work remained similar across age groups, at rest and during exercise, and habitual physical activity failed to influence these changes.  相似文献   

11.
12.
13.
The purpose of this study was to determine the number of familiarization sessions required to obtain an accurate measure of reliability associated with force variables recorded during unloaded and loaded (30 and 60% of 1 repetition maximum squat [1RM]) static vertical jumps (SJ). Nine physically active men attended 4 separate testing sessions over a 2-week period. Force platform recordings of peak force, peak rate of force development (pRFD), average rate of force development, takeoff velocity, average power, and peak power were obtained for each jump. During each of the 4 testing sessions, 3 jumps were performed under each of the load conditions. The average of the force variables were used in the analysis. Familiarization was assessed using the scores obtained during the 4 separate testing sessions. Reliability was assessed by calculating intraclass correlation coefficients (ICCs) and coefficient of variation (CV) associated with the force variables. No significant differences (p > 0.05) were obtained between the testing sessions for any of the force variables. With the exception of pRFD, the force variables showed reasonably good levels of test-retest reliability (ICC range: 0.75-0.99; CV range: 1.2-7.6%). High levels of reliability can be achieved in a variety of force variables without the need for familiarization sessions when performing SJ under unloaded conditions and with loads of 30 and 60% of 1RM squat with physically active men.  相似文献   

14.
Mean duration of heart period (DHP chi) and its standard deviation (SD), indicating heart arrhythmia and significantly correlating with DHP chi, decreased with stepwise increase of dynamic muscular work on a bicycle ergometer and static muscular work of the right upper arm flexor beyond the limit of permanent performance. This correlation, however, can be understood globally only, since the decrease of DHP chi and SD was not always continuous, but frequently changing, with alterations of increase and decrease from step to step of dynamic work load and from minute to minute of static muscular strain. This concerned particularly SD. A continuous decrease of DHP chi in dynamic muscular work was obtained only by load differences of 40 W, not by differences of 10 or 20 W. A more continuous decrease of SD was also noted during greater load-differences. The significant correlation of DHP chi and SD was lost at a load-difference of 10 W on the 60 W-step and at a load-difference of 40 W on the 180 W-step. Great loads caused at the same load-step less frequent variations of DHP chi, not of SD, than little loads. If no preceding work took place, a contary reaction of DHP chi and SD was noted often at the first load-step. Static work with greater holding force caused a more continuous decrease of DHP chi, in a lower degree of SD, than static work with lower holding force. DHP chi decreased mainly in the first minute of strain. The adjustment of mean heart rate and heart arrhythmia on a level corresponding to increase of load is influenced essentially by the difference of muscular strain appearing between two periods of work load or periods of holding. The regulation of the mean duration of heart period and of heart arrhythmia does not necessarily depend on each other.  相似文献   

15.
Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g., fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g., rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimize upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand.  相似文献   

16.
17.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

18.
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation–supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.  相似文献   

19.
Two series of experiments were performed to examine the relationship between force and change in average muscle fibre conduction velocity (MFCV) during local muscle fatigue. The average MFCV was estimated using the cross-correlation method. In the first experiment this relationship was studied with surface EMG of vastus lateralis at force levels from 10 to 100% of maximal voluntary contraction (MVC) with and without occluded circulation. The product of relative force and time was held constant. At 10-20% MVC, MFCV increased slightly under the 2 conditions. Between 30-40% MVC, MFCV decreased, this decline in conduction velocity being significantly greater with occluded circulation. Above 40% MVC the decline in MFCV was larger at higher forces, but without any differences between the ischaemic and non-ischaemic conditions. In the second experiment the relationship between change in force and MFCV was studied during sustained maximal voluntary contractions of biceps brachii. MFCV declined during the first 26-39 s of the contraction, followed by an increase. Since this increase occurred when the force had dropped to 30-50% of the initial maximal force, a partial restoration of blood flow is thought to be responsible for this phenomenon. Because an increase in MFCV was noted, despite a further decline in force, this implies that at high force levels the change in MFCV during fatigue could partly be caused by mechanisms different from those accounting for the force loss. It is concluded that above 40% MVC intramuscular pressure is sufficiently high to cause ischaemia, and MFCV is found to be very sensitive to changes in intramuscular blood flow.  相似文献   

20.
During a sustained contraction, electromyographic signals (EMGs) undergo a spectral compression. This fatigue behaviour induces a shift of the mean and the median frequencies to lower frequencies. On the other hand, several studies conclude that the mean/median frequency can increase, decrease or remain constant with an increasing force level. Such inconsistency is embarrassing since the fatigue state may be influenced by the force level. In this paper, we propose a frequency indicator which is sensitive to the force level independently of the fatigue state evaluated at 70% of the maximal voluntary contraction. Ten healthy volunteers participated in the study and both surface EMGs (from the short head of the biceps brachii) and force signals were measured. This study compared force and fatigue effects on the EMGs during short (3-s) isometric contractions at different strength intensities and during a sustained isometric contraction until exhaustion. The EMGs partly show 1/falpha spectral behaviours since their power spectral densities may experimentally fit with two linear segments in a log-log representation. The measured "right" slope produces variations of force as 20 times the variations of fatigue. 1/falpha Behaviour may be related to stochastic fractals. This fractal indicator is a new frequency indicator that is thus complementary to other known classical frequency indicators when studying force during unknown fatigue states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号