首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.  相似文献   

2.
Z. Yang  S. Kumar    M. Nei 《Genetics》1995,141(4):1641-1650
A statistical method was developed for reconstructing the nucleotide or amino acid sequences of extinct ancestors, given the phylogeny and sequences of the extant species. A model of nucleotide or amino acid substitution was employed to analyze data of the present-day sequences, and maximum likelihood estimates of parameters such as branch lengths were used to compare the posterior probabilities of assignments of character states (nucleotides or amino acids) to interior nodes of the tree; the assignment having the highest probability was the best reconstruction at the site. The lysozyme c sequences of six mammals were analyzed by using the likelihood and parsimony methods. The new likelihood-based method was found to be superior to the parsimony method. The probability that the amino acids for all interior nodes at a site reconstructed by the new method are correct was calculated to be 0.91, 0.86, and 0.73 for all, variable, and parsimony-informative sites, respectively, whereas the corresponding probabilities for the parsimony method were 0.84, 0.76, and 0.51, respectively. The probability that an amino acid in an ancestral sequence is correctly reconstructed by the likelihood analysis ranged from 91.3 to 98.7% for the four ancestral sequences.  相似文献   

3.
Using parsimony to reconstruct ancestral character states on a phylogenetic tree has become a popular method for testing ecological and evolutionary hypotheses. Despite its popularity, the assumptions and uncertainties of reconstructing the ancestral states of a single character have received less attention than the much less challenging endeavor of reconstructing phylogenetic trees from many characters. Recent research suggests that parsimony reconstructions are often sensitive to violations of the almost universal assumption of equal probabilities of gains and losses. In addition, maximum likelihood has been developed as an alternative to parsimony reconstruction, and has also revealed a surprising amount of uncertainty in ancestral reconstructions.  相似文献   

4.
Although a large body of work investigating tests of correlated evolution of two continuous characters exists, hypotheses such as character displacement are really tests of whether substantial evolutionary change has occurred on a particular branch or branches of the phylogenetic tree. In this study, we present a methodology for testing such a hypothesis using ancestral character state reconstruction and simulation. Furthermore, we suggest how to investigate the robustness of the hypothesis test by varying the reconstruction methods or simulation parameters. As a case study, we tested a hypothesis of character displacement in body size of Caribbean Anolis lizards. We compared squared-change, weighted squared-change, and linear parsimony reconstruction methods, gradual Brownian motion and speciational models of evolution, and several resolution methods for linear parsimony. We used ancestor reconstruction methods to infer the amount of body size evolution, and tested whether evolutionary change in body size was greater on branches of the phylogenetic tree in which a transition from occupying a single-species island to a two-species island occurred. Simulations were used to generate null distributions of reconstructed body size change. The hypothesis of character displacement was tested using Wilcoxon Rank-Sums. When tested against simulated null distributions, all of the reconstruction methods resulted in more significant P-values than when standard statistical tables were used. These results confirm that P-values for tests using ancestor reconstruction methods should be assessed via simulation rather than from standard statistical tables. Linear parsimony can produce an infinite number of most parsimonious reconstructions in continuous characters. We present an example of assessing the robustness of our statistical test by exploring the sample space of possible resolutions. We compare ACCTRAN and DELTRAN resolutions of ambiguous character reconstructions in linear parsimony to the most and least conservative resolutions for our particular hypothesis.  相似文献   

5.
Summary Goodman et al.'s (1974) populous path algorithm for estimating hidden mutational change in protein evolution is designed to be used as an adjunct to the maximum parsimony method. When the algorithm is so used, the augmented maximum parsimony distances, far from being overestimates, are underestimates of the actual number of nucleotide substitutions which occur in Tateno and Nei's (1978) computer simulation by the Poisson process model, even when the simulation is carried out at two and a half times the sequence density. Although underestimates, our evidence shows that they are nevertheless more accurate than estimates obtained by a Poisson correction. In the maximum parsimony reconstruction, there is a bias towards overrepresenting the number of shared nucleotide identities between adjacent ancestral and descendant nodal sequences with the bias being stronger in those portions of the evolutionary tree sparser in sequence data. Because of this particular property of maximum parsimony reconstructed sequences, the conclusions of Tateno and Nei concerning the statistical properties of the populous path algorithm are invalid. We conclude that estimates of protein evolutionary rates by the maximum parsimony - populous path approach will become more accurate rather than less as larger numbers of closely related species are included in the analysis.  相似文献   

6.
Considerable diversity abounds among sponges with respect to reproductive and developmental biology. Their ancestral sexual mode (gonochorism vs. hermaphroditism) and reproductive condition (oviparity vs. viviparity) however remain unclear, and these traits appear to have undergone correlated evolution in the phylum. To infer ancestral traits and investigate this putative correlation, we used DNA sequence data from two loci (18S ribosomal RNA and cytochrome c oxidase subunit I) to explore the phylogenetic relationships of 62 sponges whose reproductive traits have been previously documented. Although the inferred tree topologies, using the limited data available, favoured paraphyly of sponges, we also investigated ancestral character‐state reconstruction on a phylogeny with constrained sponge monophyly. Both parsimony‐ and likelihood‐based ancestral state reconstructions indicate that viviparity (brooding) was the likely reproductive mode of the ancestral sponge. Hermaphroditism is favoured over gonochorism as the sexual condition of the sponge ancestor under parsimony, but the reconstruction is ambiguous under likelihood, rendering the ancestry of sexuality unresolved in our study. These results are insensitive to the constraint of sponge monophyly when tracing the reproductive characters using parsimony methods. However, the maximum likelihood analysis of the monophyletic hypothetical tree rendered gonochorism as ancestral for the phylum. A test of trait correlation unambiguously favours the concerted evolution of sexuality and reproductive mode in sponges (hermaphroditism/viviparity, gonochorism/oviparity). Although testing ecological hypotheses for the pattern of sponge reproduction is beyond the scope of our analyses, we postulate that certain physiological constrains might be key causes for the correlation of reproductive characters.  相似文献   

7.
We propose two approximate methods (one based on parsimony and one on pairwise sequence comparison) for estimating the pattern of nucleotide substitution and a parsimony-based method for estimating the gamma parameter for variable substitution rates among sites. The matrix of substitution rates that represents the substitution pattern can be recovered through its relationship with the observable matrix of site pattern frequences in pairwise sequence comparisons. In the parsimony approach, the ancestral sequences reconstructed by the parsimony algorithm were used, and the two sequences compared are those at the ends of a branch in the phylogenetic tree. The method for estimating the gamma parameter was based on a reinterpretation of the numbers of changes at sites inferred by parsimony. Three data sets were analyzed to examine the utility of the approximate methods compared with the more reliable likelihood methods. The new methods for estimating the substitution pattern were found to produce estimates quite similar to those obtained from the likelihood analyses. The new method for estimating the gamma parameter was effective in reducing the bias in conventional parsimony estimates, although it also overestimated the parameter. The approximate methods are computationally very fast and appear useful for analyzing large data sets, for which use of the likelihood method requires excessive computation.   相似文献   

8.
The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of “ancestral sequences” inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a “best guess” amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.  相似文献   

9.
The branching topology of the archaeal (archaebacterial) domain was inferred from sequence comparisons of the largest subunit (B) of DNA-dependent RNA polymerases (RNAP). Both the nucleic acid sequences of the genes coding for RNAP subunit B and the amino acid sequences of the derived gene products were used for phylogenetic reconstructions. Individual analysis of the three nucleotide positions of codons revealed significant inequalities with respect to guanosine and cytosine (GC) content and evolutionary rates. Only the nucleotides at the second codon positions were found to be unbiased by varied GC contents and sufficiently conserved for reliable phylogenetic reconstructions. A decision matrix was used for the combination of the results of distance matrix, maximum parsimony, and maximum likelihood methods. For this purpose the original results (sums of squares, steps, and logarithms of likelihoods) were transformed into comparable effective values and analyzed with methods known from the theory of statistical decisions. Phylogenetic invariants and statistical analysis with resampling techniques (bootstrap and jackknife) confirmed the preferred branching topology, which is significantly different from the topology known from phylogenetic trees based on 16S rRNA sequences. The preferred topology reconstructed by this analysis shows a common stem for the Methanococcales and Methanobacteriales and a separation of the thermophilic sulfur archaea from the methanogens and halophiles. The latter coincides with a unique phylogenetic location of a characteristic splitting event replacing the largest RNAP subunit of thermophilic sulfur archaea by two fragments in methanogens and halophiles. This topology is in good agreement with physiological and structural differences between the various archaea and demonstrates RNAP to be a suitable phylogenetic marker molecule. Correspondence to: H.-P. Klenk  相似文献   

10.
The phylogenetic tree (PT) problem has been studied by a number of researchers as an application of the Steiner tree problem, a well-known network optimisation problem. Of all the methods developed for phylogenies the maximum parsimony (MP) method is a simple and commonly used method because it relies on directly observable changes in the input nucleotide or amino acid sequences. In this paper we show that the non-uniqueness of the evolutionary pathways in the MP method leads us to consider a new model of PTs. In this so-called probability representation model, for each site a node in a PT is modelled by a probability distribution of nucleotide or amino acid states, and hence the PT at a given site is a probability Steiner tree, i.e. a Steiner tree in a high-dimensional vector space. In spite of the generality of the probability representation model, in this paper we restrict our study to constructing probability phylogenetic trees (PPT) using the parsimony criterion, as well as discussing and comparing our approach with the classical MP method. We show that for a given input set although the optimal topology as well as the total tree length of the PPT is the same as the PT constructed by the classical MP method, the inferred ancestral states and branch lengths are different and the results given by our method provide a plausible alternative to the classical ones.  相似文献   

11.
We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkworm species that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA andcoxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) forcoxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.  相似文献   

12.
Summary A method for molecular phylogeny construction is newly developed. The method, called the stepwise ancestral sequence method, estimates molecular phylogenetic trees and ancestral sequences simultaneously on the basis of parsimony and sequence homology. For simplicity the emphasis is placed more on parsiomony than on sequence homology in the present study, though both are certainly important. Because parsimony alone will sometimes generate plural candidate trees, the method retains not one but five candidates from which one can then single out the final tree taking other criteria into account.The properties and performance of the method are then examined by simulating an evolving gene along a model phylogenetic tree. The estimated trees are found to lie in a narrow range of the parsimony criteria used in the present study. Thus, other criteria such as biological evidence and likelihood are necessary to single out the correct tree among them, with biological evidence taking precedence over any other criterion. The computer simulation also reveals that the method satisfactorily estimates both tree topology and ancestral sequences, at least for the evolutionary model used in the present study.  相似文献   

13.
On the basis of comparison of the cytochrome b gene nucleotide sequences from genetic databases, the possible phylogenetic relationships of mitochondrial DNA (mtDNA) among all major lineages of Salmoninae (Brachymystax, Parahucho, Salvelinus, Salmo, Parasalmo, and Oncorhynchus) were examined. Three different phylogenetic methods (UPGMA, NJ, and ML) yielded phylogenetic trees of essentially the same topology: (((Brachymystax, Parahucho), Salvelinus, Salmo), (Parasalmo, Oncorhynchus)). The results obtained using the maximum parsimony method were less clear. Apparently, the divergence of the main salmonid lineages occurred during a relatively short time period; hence, the number of synapomorphs marking the order of their divergence was extremely low. This may account for the relative failure to use the maximum parsimony method of phylogenetic reconstruction. The problem of concordance of mtDNA and species phylogenetic schemes is discussed. Their discrepancy in salmonids may be caused by interspecific introgressive hybridization.  相似文献   

14.
Summary The concept of phylogenetic denseness bears critically on the accuracy of evolutionary pathways inferred from experimentally sequenced proteins isolated from extant species. In this paper I develop an objective measure,, of denseness to supplement previous intuitive concepts and which permits one to use this concept in comparing the quality of different evolutionary reconstructions. This measure is used to examine several published phylogenetic trees: insulin, a-hemoglobin,-hemoglobin, myoglobin, cytochromec, and the parvalbumin family. The paper emphasizes 1) the importance of denseness in accurately estimating the number of nucleotide replacements which separate homologous sequences when this estimation is made by the method of parsimony, 2) the value of this concept in assessing the quality of those estimates, and 3) the use of this concept as a biologically practical heuristic method for identifying poorly studied regions in a phylogenetic tree, whether or not the tree was obtained by the parsimony method.  相似文献   

15.
An enigmatic acrochaetioid alga was collected from Niangziguan spring in Shanxi Province, northern China. Morphological data indicated that this alga reproduces exclusively asexually by monosporangia and its morphological characteristics suggested that it might be referred to Audouinella heterospora. To ascertain its phylogenetic position, phylogenetic trees were reconstructed using partial sequences of the plastid‐encoded gene (rbcL) and the nuclear‐encoded gene (SSU rDNA) applying Bayesian inference (BI), maximum parsimony (MP) and maximum likelihood (ML). However, phylogenetic reconstructions showed that this acrochaetioid alga does not belong in a clade with the genus Audouinella, but forms a clade with Thorea hispida (Thoreales). Based on this analysis it is concluded that A. heterospora represents the ‘chantransia’ stage of T. hispida.  相似文献   

16.
The codon-degeneracy model (CDM) predicts relative frequencies of substitution for any set of homologous protein-coding DNA sequences based on patterns of nucleotide degeneracy, codon composition, and the assumption of selective neutrality. However, at present, the CDM is reliant on outside estimates of transition bias. A new method by which the power of the CDM can be used to find a synonymous transition bias that is optimal for any given phylogenetic tree topology is presented. An example is illustrated that utilizes optimized transition biases to generate CDM GF-scores for every possible phylogenetic tree for pocket gophers of the genus Orthogeomys. The resulting distribution of CDM GF-scores is compared and contrasted with the results of maximum parsimony and maximum likelihood methods. Although convergence on a single tree topology by the CDM and another method indicates greater support for that particular tree, the value of CDM GF-score as the sole optimality criterion for phylogeny reconstruction remains to be determined. It is clear, however, that the a priori estimation of an optimum transition bias from codon composition has a direct application to differentiating between alternative trees. Received: 13 October 1999 / Accepted: 28 April 2000  相似文献   

17.
Two phytoplasmas closely related to the X‐disease group were associated with China‐tree (Melia azedarach L.) and garlic (Allium sativum L.) decline diseases in Argentina. The present work was aimed at studying their phylogenetic relationship based on molecular characterization of the 16S ribosomal DNA sequences. Phytoplasma DNAs were obtained from naturally infected China‐tree and garlic plants from different geographical isolates. The results from analysis of restriction fragment length polymorphisms and nucleotide sequences of the 16S rDNA showed the affiliation of China‐tree and garlic decline phytoplasmas to the 16SrIII (X‐disease group), subgroups B and J, respectively. Both organisms had high sequence similarities in the 16SrDNA nucleotide sequence with the Chayote witches’ broom phytoplasma from Brazil. The phylogenetic tree, constructed by parsimony analysis, grouped the Garlic decline, China‐tree decline, Chayote witches’ broom and Clover yellow edge phytoplasmas into a cluster separated from the other phytoplasmas of the X‐disease group.  相似文献   

18.
The genes for testis-specific protein Y (TSPY) were sequenced from chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), and baboon (Papio hamadryas). The sequences were compared with each other and with the published human sequence. Substitutions were detected at 144 of the 755 nucleotide positions compared. In overviewing five sequences, one deletion in human, four successive nucleotide insertions in orangutan, and seven deletions/insertions in baboon sequence were noted. The present sequences differed from that of human by 1.9% (chimpanzee), 4.0% (gorilla), 8.2% (orangutan), and 16.8% (baboon), respectively. The phylogenetic tree constructed by the neighbor-joining method suggests that human and chimpanzee are more closely related to each other than either of them is to gorilla, and this result is also supported by maximum likelihood and strict consensus maximum parsimony trees. The number of nucleotide substitutions per site between human and chimpanzee, gorilla, and orangutan for TSPY intron were 0.024, 0.048, and 0.094, respectively. The rates of nucleotide substitutions per site per year were higher in the TSPY intron than in the TSPY exon, and higher in the TSPY intron than in the ZFY (Zinc Finger Y) intron in human and apes. © 1996 Wiley-Liss, Inc.  相似文献   

19.
A mathematical theory for the evolutionary change of restriction endonuclease cleavage sites is developed, and the probabilities of various types of restriction-site changes are evaluated. A computer simulation is also conducted to study properties of the evolutionary change of restriction sites. These studies indicate that parsimony methods of constructing phylogenetic trees often make erroneous inferences about evolutionary changes of restriction sites unless the number of nucleotide substitutions per site is less than 0.01 for all branches of the tree. This introduces a systematic error in estimating the number of mutational changes for each branch and, consequently, in constructing phylogenetic trees. Therefore, parsimony methods should be used only in cases where nucleotide sequences are closely related. Reexamination of Ferris et al.'s data on restriction-site differences of mitochondrial DNAs does not support Templeton's conclusions regarding the phylogenetic tree for man and apes and the molecular clock hypothesis. Templeton's claim that Nei and Li's method of estimating the number of nucleotide substitutions per site is seriously affected by parallel losses and loss-gains of restriction sites is also unsupported.   相似文献   

20.
Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non‐Brownian models, missing data, and within‐species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time‐consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000‐species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within‐species variation, non‐Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time‐consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation‐Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars functions anc.recon and phylopars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号