首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
F Unckell  R E Streeck    M Sapp 《Journal of virology》1997,71(4):2934-2939
Since human papillomaviruses (HPV) cannot be propagated in cell culture, the generation of infectious virions in vitro is a highly desirable goal. Here we report that pseudovirions can be generated by the assembly of virus-like particles (VLPs) in COS-7 cells containing multiple copies of a marker plasmid. Using recombinant vaccinia viruses, we have obtained spherical VLPs of HPV type 33 (HPV-33) which fractionate into heavy and light VLPs in cesium chloride density gradients. VLPs in the heavy fraction (1.31 g/cm3) carry the plasmid in DNase-resistant form and are capable of transferring the genetic marker located on the plasmid to COS-7 cells in a DNase-resistant way (pseudoinfection). The minor capsid protein L2 is not required for encapsidation but is essential for efficient pseudoinfection. Antiserum to HPV-33 VLPs inhibits VLP-mediated DNA transfer with high efficiency. Antisera to VLPs of HPV-18 and HPV-16 are not neutralizing, although the HPV-16 antiserum exhibited some cross-reactivity with HPV-33 VLPs in an enzyme-linked immunosorbent assay. In a cell binding assay, the titer of the HPV-33 VLP antiserum was 1:200 compared to the neutralization titer of 1:10(5). This indicates that neutralization is essentially due to the inhibition of cellular processes after VLP binding to cells. The encapsidation of marker plasmids into VLPs provides a sensitive and fast assay for the evaluation of neutralizing potentials of antisera against papillomavirus infections.  相似文献   

2.
Human Papillomaviruses (HPVs) are the etiological agents of cervical cancer, and HPV‐16 is the most prevalent type. Several HPVs require heparan sulfate proteoglycans (HSPGs) for cell binding. Here, we analyse the phenomenon that preincubation of HPV‐16 with increasing concentrations of heparin results in partial restoration rather than more efficient inhibition of infection. While corroborating that the HSPGs are cell‐binding receptors for HPV‐16, heparin‐preincubated virus bound to the extracellular matrix (ECM) via laminin‐332. Furthermore, the interaction of virions with heparin, a representative of the highly sulfated S‐domains of heparan sulfate (HS) chains of HSPGs, allowed HPV‐16 infection in the absence of cell surface HSPGs. Therefore, we concluded that specific glycan moieties but not specific HSPG protein backbones are required for infection. The increased binding of an epitope‐specific antibody to the viral capsid after heparin binding suggested that initial conformational changes in the HPV‐16 virion occur during infection by interaction with‘heparin‐like’ domains of cellular HSPGs. We propose that HS sequences with specific sulfation patterns are required to facilitate HPV‐16 infection.  相似文献   

3.
Infection of cells by human papillomaviruses (HPVs) associated with malignant genital lesions has not been studied because of the lack of an in vitro system and the unavailability of virions. We have now used virus-like particles (VLPs) of HPV type 33 to analyze the initial events in the interaction of the HPV capsid with cell lines. Binding of VLPs to HeLa cells was observed in biochemical assays and by immunofluorescence. VLP binding was inhibited by antisera raised against VLPs but not by monoclonal antibodies recognizing either L1 or L2 epitopes accessible on VLPs. Under saturating conditions, approximately 2 x 10(4) VLPs were bound per cell, with a dissociation constant of about 100 pM. VLPs composed of L1 alone bound as well as VLPs composed of both capsid proteins, indicating that L2 is not required for initial binding. VLPs dissociated into capsomers did not bind, demonstrating that intercapsomer contacts are required. Neither capsomers nor simian virus 40 virions competed with VLP binding. Uptake of VLPs by small and smooth endocytic vesicles was demonstrated by immunoelectron microscopy. Cellular binding of VLPs was sensitive to trypsin but not to sialidase, N-glycosidase, or octyl-beta-D-glycopyranoside treatment, suggesting that a cell surface protein is involved in the VLP binding. Cell lines originating from a variety of tissues and organisms as distantly related as insects and humans bound VLPs with similar efficiency and specificity. Therefore, the putative receptor mediating VLP attachment should be highly conserved and cannot be responsible for the species and tissue specificity of HPVs.  相似文献   

4.
Papillomaviruses replicate in stratified epithelia of skin and mucosa. Infection with certain human papillomavirus (HPV) types is the main cause of anogenital neoplasia, in particular cervical cancer. Early events of papillomavirus infectivity are poorly understood. While heparan sulfate proteoglycans (HSPGs) mediate initial binding to the cell surface, the class of proteins carrying heparan sulfates has not been defined. Here we examined two processes of papillomavirus infection, attachment of virus-like particles (VLP) to cells and infection with authentic HPV type 11 (HPV11) virions. Of the HSPGs, syndecan-1 is the major epithelial form and is strongly upregulated in wound edge keratinocytes. We employed K562 cells, which lack HSPGs except minor amounts of endogenous betaglycan, and stable clones that express cDNAs of syndecan-1, syndecan-4, or glypican-1. Binding of VLP correlated with levels of heparan sulfate on the cell surface. Parental K562 bound HPV16 VLP weakly, whereas all three K562 transfectants demonstrated enhanced binding, with the highest binding capacity observed for syndecan-1-transfected cells, which also expressed the most HSPG. For HPV11 infectivity assays, a high virion inoculum was required to infect K562 cells, whereas ectopic expression of syndecan-1 increased permissiveness eightfold and expression of syndecan-4 or glypican-1 fourfold. Infection of keratinocytes was eliminated by treatment with heparitinase, but not phospholipase C, further implicating the syndecan family of integral membrane proteins as receptor proteins. Human keratinocytes with a homozygous deletion of alpha6 integrin are permissive for HPV11 infection. These results indicate that several HSPGs can serve as HPV receptors and support a putative role for syndecan-1, rather than alpha6 integrin, as a primary receptor protein in natural HPV infection of keratinocytes.  相似文献   

5.
Kim HJ  Lim SJ  Kwag HL  Kim HJ 《PloS one》2012,7(4):e35893
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.  相似文献   

6.
The host factors required for in vivo infection have not been investigated for any papillomavirus. Using a recently developed murine cervicovaginal challenge model, we evaluated the importance of heparan sulfate proteoglycans (HSPGs) in human papillomavirus (HPV) infection of the murine female genital tract. We examined HPV type 16 (HPV16) as well as HPV31 and HPV5, for which some evidence suggests that they may differ from HPV16 in their utilization of HSPGs as their primary attachment factor in vitro. Luciferase-expressing pseudovirus of all three types infected the mouse genital tract, although HPV5, which normally infects nongenital epidermis, was less efficient. Heparinase III treatment of the genital tract significantly inhibited infection of all three types by greater than 90% and clearly inhibited virion attachment to the basement membrane and cell surfaces, establishing that HSPGs are the primary attachment factors for these three viruses in vivo. However, the pseudoviruses differed in their responses to treatment with various forms of heparin, a soluble analog of heparan sulfate. HPV16 and HPV31 infections were effectively inhibited by a highly sulfated form of heparin, but HPV5 was not, although it bound the compound. In contrast, a N-desulfated and N-acylated variant preferentially inhibited HPV5. Inhibition of infection paralleled the relative ability of the variants to inhibit basement membrane and cell surface binding. We speculate that cutaneous HPVs, such as HPV5, and genital mucosal HPVs, such as HPV16 and -31, may have evolved to recognize different forms of HSPGs to enable them to preferentially infect keratinocytes at different anatomical sites.Papillomaviruses (PVs) are icosahedral DNA viruses that have evolved into numerous genotypes that productively infect diverse vertebrates in a species-specific manner. These viruses also display strict tissue specificity, productively infecting only epithelial cells in the skin and mucosa. These features have inhibited viral propagation in vitro and retarded the development of in vivo models for infection. The human PVs (HPVs) belonging to the alpha genus preferentially infect the genital mucosa, and a subset of this genus include the types (e.g., HPV16, -18, -31, -33, and -45) that are the causative agents of cervical carcinoma. HPV types belonging to the beta genus generally cause asymptomatic skin infections, but certain beta types (e.g., HPV5 and -8) are associated with cutaneous squamous cell carcinomas in individuals with the rare genetic disorder epidermodysplasia verruciformis.As with other viruses, virion attachment to the host cell is required for successful PV infection. In vitro studies have implicated cell surface heparan sulfate (HS) proteoglycans (HSPGs) as the primary attachment factors for most HPV types (13, 15). HSPGs are composed of a core protein with covalently attached repeating disaccharide units known as glycosaminoglycans. Posttranslational modification of the glycosaminoglycans by acetylation and sulfation leads to substantial heterogeneity that varies across cell type and growth conditions (20, 23). HSPGs are nearly ubiquitously expressed on mammalian cell surfaces, where they are involved in diverse biological processes, including organogenesis, growth factor and cytokine binding, and wound healing. They are also integral components of the basement membrane (BM), the specialized extracellular matrix (ECM) that surrounds most tissues. In this locale, their putative functions include regulation of BM permeability, binding of growth factors, and a role in cellular adhesion (reviewed in reference 10).HSPGs can also help mediate infection by acting as receptors/coreceptors for some bacterial and viral pathogens (reviewed in reference 12). It is well established that HPV16 utilizes attachment to HSPGs for efficient infection in vitro. However, in vitro studies investigating other HPV types, such as HPV31 and HPV5, have described possible differences. Infection with HPV31 has been reported to be HSPG independent in keratinocyte lines such as HaCaT, although not in other, more transformed lines (17). Also, heparin, which shares the same disaccharide units with HS but is more homogeneous and has a higher level of sulfation, did not inhibit HPV5 infection at doses that efficiently blocked HPV16 infection in vitro (3).In addition to binding cell surfaces, PVs also bind strongly to the ECM deposited by epithelial cells in vitro and onto the BM in vivo (5, 9, 18). Laminin 5 appears to be the primary molecule mediating in vitro ECM binding (6). However, interaction with an HS moiety on the ECM may be critical for transfer of infectious virions to the cell surface (21). PV cell surface binding in vitro may arise independently of ECM binding; however, the kinetics of in vivo infection suggest that virion binding to the BM may be essential. It is therefore possible that this aspect of in vivo infection could differ from what has been seen in vitro.It is unclear if HSPGs play any role in PV infection in vivo, as the cellular factors and processes involved in PV infection of epithelial tissues in vivo have not been examined previously. There is a clear precedent of in vitro HSPG dependence for infection of cell lines that does not reflect an in vivo function. For instance, HSPGs facilitate human immunodeficiency virus infection of certain permissive lymphoid cell lines in vitro, yet they play no role in the infection of primary blood lymphocytes (14).In this study, we utilized our recently developed murine cervicovaginal challenge model (18), which is useful to examine establishment of HPV infection in vivo, to investigate the HSPG dependency of HPV infection, examining both binding and infection of HPV16 pseudovirions in the presence of agents that either compete for HS binding or remove HS from cell surfaces. Because of the published data suggesting possible differences from HPV16 in HSPG dependency for in vitro infection, we also evaluated HPV5 and HPV31 pseudovirions.  相似文献   

7.
Artificial viruses consisting of DNA plasmid packaged in vitro into virus-like particles (VLPs) are new vehicles for gene transfer. We therefore investigated the ability of nine human papillomavirus (HPV) VLPs to interact with heterologous DNA and transfer genes. HPV 16, 18, 31, 33, 39, 45, 58, 59, and 68 VLPs were able to bind heterologous DNA and to transfer genes into Cos-7 cells. Inhibition of gene transfer by preincubation of the pseudovirions with heparin confirmed that heparan sulfate on the cell surface plays a role as cell receptor for HPVs. As HPV neutralizing antibodies are mainly type-specific, gene transfer with different HPV pseudovirions offers the possibility of their sequential use in vivo for a greater efficacy.  相似文献   

8.
Day PM  Lowy DR  Schiller JT 《Journal of virology》2008,82(24):12565-12568
Papillomavirus infection normally involves virion binding to cell surface heparan sulfate proteoglycans (HSPGs). However, we found that human papillomavirus type 16 pseudovirions efficiently bound and infected cells lacking HSPGs if their L2 capsid protein was precleaved by furin, a cellular protease required for infection. The inability of pseudovirions to efficiently bind and infect cultured primary keratinocytes was also overcome by furin precleavage, suggesting that the defect involves altered HSPG modification. We conclude that the primary function of HSPG binding is to enable cell surface furin cleavage of L2 and that binding to a distinct cell surface receptor(s) is a subsequent step of papillomavirus infection.  相似文献   

9.
Noroviruses are a major cause of epidemic acute nonbacterial gastroenteritis worldwide. Here we report our discovery that recombinant Norwalk virus virus-like particles (rNV VLPs) agglutinate red blood cells (RBCs). Since histo-blood group antigens are expressed on gut mucosa as well as RBCs, we used rNV VLP hemagglutination (HA) as a model system for studying NV attachment to cells in order to help identify a potential NV receptor(s). rNV VLP HA is dependent on low temperature (4 degrees C) and acidic pH. Of the 13 species of RBCs tested, rNV VLPs hemagglutinated only chimpanzee and human RBCs. The rNV VLPs hemagglutinated all human type O (11 of 11), A (9 of 9), and AB (4 of 4) RBCs; however, few human type B RBC samples (4 of 14) were hemagglutinated. HA with periodate- and neuraminidase-treated RBCs indicated that rNV VLP binding was carbohydrate dependent and did not require sialic acid. The rNV VLPs did not hemagglutinate Bombay RBCs (zero of seven) that lack H type 2 antigen, and an anti-H type 2 antibody inhibited rNV VLP HA of human type O RBCs. These data indicated that the H type 2 antigen functions as the rNV VLP HA receptor on human type O RBCs. The rNV VLP HA was also inhibited by rNV VLP-specific monoclonal antibody 8812, an antibody that inhibits VLP binding to Caco-2 cells. Convalescent-phase sera from NV-infected individuals showed increased rNV VLP HA inhibition titers compared to prechallenge sera. In carbohydrate binding assays, the rNV VLPs bound to synthetic Lewis d (Le(d)), Le(b), H type 2, and Le(y) antigens, and these antigens also inhibited rNV VLP HA of human type O RBCs. Overall, our results indicate that carbohydrate antigens in the gut are a previously unrecognized factor in NV pathogenesis.  相似文献   

10.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用   总被引:4,自引:0,他引:4  
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。  相似文献   

11.
The mechanisms of human papillomavirus (HPV) neutralization by antibodies are incompletely understood. We have used HPV16 pseudovirus infection of HaCaT cells to analyze how several neutralizing monoclonal antibodies (MAbs) generated against HPV16 L1 interfere with the process of keratinocyte infection. HPV16 capsids normally bind to both the cell surface and extracellular matrix (ECM) of HaCaT cells. Surprisingly, two strongly neutralizing MAbs, V5 and E70, did not prevent attachment of capsids to the cell surface. However, they did block association with the ECM and prevented internalization of cell surface-bound capsids. In contrast, MAb U4 prevented binding to the cell surface but not to the ECM. The epitope recognized by U4 was inaccessible when virions were bound to the cell surface but became accessible after endocytosis, presumably coinciding with receptor detachment. Treatment of capsids with heparin, which is known to interfere with binding to cell surface heparan sulfate proteoglycans (HSPGs), also resulted in HPV16 localization to the ECM. These results suggest that the U4 epitope on the intercapsomeric C-terminal arm is likely to encompass the critical HSPG interaction residues for HPV16, while the V5 and E70 epitopes at the apex of the capsomer overlap the ECM-binding sites. We conclude that neutralizing antibodies can inhibit HPV infection by multiple distinct mechanisms, and understanding these mechanisms can add insight to the HPV entry processes.  相似文献   

12.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of poorly understood function associated with fibrillin-1-containing microfibrils during elastinogenesis. In this study we investigated the molecular interactions of LTBP-2 with heparin and heparan sulfate proteoglycans (HSPGs) since unidentified cell surface HSPGs are critical for normal fiber assembly. In solid phase assays, heparin conjugated to albumin (HAC) bound strongly to recombinant full-length human LTBP-2. This interaction was completely blocked by addition of excess heparin, but not chondroitin sulfate, confirming specificity. Analysis of binding to LTBP-2 fragments showed that HAC bound strongly to N-terminal fragment LTBP-2 NT(H) and more weakly to central fragment LTBP-2 C(H). No binding was detected to C-terminal fragment LTBP-2 CT(H). Kds for heparin binding were calculated for full-length LTBP-2, LTBP-2 NT(H) and LTBP-2 C(H) as 0.9 nM, 0.7 nM and 80 nM respectively. HAC interaction with fragment LTBP-2 NT(H) was not sensitive to EDTA or EGTA indicating that binding had no requirement for Ca2+ ions whereas HAC binding to fragment LTBP-2 C(H) was markedly reduced by these chelating agents indicating a degree of Ca2+ dependence. Inhibition studies with synthetic peptides identified three major heparin binding sequences in fragment LTBP-2 NT(H), including sequence LTEKIKKIKIV in the first large cysteine-free domain of LTBP-2, adjacent to the previously identified fibulin-5 binding site. LTBP-2 was found to interact strongly in a heparin-inhibitable manner with cell surface HSPG syndecan-4, but showed no interaction with recombinant syndecan-2. LTBP-2 also showed strong interaction with the heparan sulfate chains of basement membrane HSPG, perlecan. The potential importance of HSPG–LTBP-2 interactions in elastic fiber assembly and microfibril attachment to basement membranes is discussed.  相似文献   

13.
Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.  相似文献   

14.
Hu QY  Fink E  Happer M  Elder JH 《Journal of virology》2011,85(14):7108-7117
Heparan sulfate proteoglycans (HSPGs) act as binding receptors or attachment factors for the viral envelope of many viruses, including strains of HIV and feline immunodeficiency virus (FIV). The FIV gp95 glycoprotein (SU) from laboratory-adapted strains (tissue culture adapted [TCA]) such as FIV-34TF10 can bind to HSPG, whereas SU from field strains (FS) such as FIV-PPR cannot. Previous studies indicate that SU-HSPG interactions occur within the V3 loop. We utilized a series of nested V3 peptides to further map the HSPG binding sites and found that both sides of the predicted V3 loop stem were critical for the binding but not the CXCR4 binding domain near the predicted tip of the V3 loop. Neutralization assays for TCA strain entry using the same set of V3 peptides showed that peptides targeting CXCR4 or HSPG binding sites can block infection, supporting the V3 loop as a critical neutralization target. Site-directed mutagenesis identified two highly conserved arginines, R379 and R389, on the N-terminal side of the V3 stem as critical for the contact between SU and HSPG. Residues K407, K409, K410, and K412 on the C-terminal side of the V3 stem form a second nonconserved domain necessary for HSPG binding, consistent with the observed specificity distinctions with FS FIV. Our findings discriminate structural determinants important for HSPG and CXCR4 binding by FIV SU and thus further define the importance of the V3 loop for virus entry and infection.  相似文献   

15.
Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular matrix (ECM) glycoprotein that can stimulate procollagen processing by procollagen C-proteinases (PCPs) such as bone morphogenetic protein-1 (BMP-1). The PCPs can process additional extracellular protein precursors and play fundamental roles in developmental processes and assembly of the ECM. The stimulatory activity of PCPE-1 is restricted to the processing of fibrillar procollagens, suggesting PCPE-1 is a specific regulator of collagen deposition. PCPE-1 consists of two CUB domains that bind to the procollagen C-propeptides and are required for PCP enhancing activity, and one NTR domain that binds heparin. To understand the biological role of the NTR domain, we performed surface plasmon resonance (SPR) binding assays, cell attachment assays as well as immunofluorescence and activity assays, all indicating that the NTR domain can mediate PCPE-1 binding to cell surface heparan sulfate proteoglycans (HSPGs). The SPR data revealed binding affinities to heparin/HSPGs in the high nanomolar range and dependence on calcium. Both 3T3 mouse fibroblasts and human embryonic kidney cells (HEK-293) attached to PCPE-1, an interaction that was inhibited by heparin. Cell attachment was also inhibited by an NTR-specific antibody and the NTR fragment. Immunofluorescence analysis revealed that PCPE-Flag binds to mouse fibroblasts and heparin competes for this binding. Cell-associated PCPE-Flag stimulated procollagen processing by BMP-1 several fold. Our data suggest that through interaction with cell surface HSPGs, the NTR domain can anchor PCPE-1 to the cell membrane, permitting pericellular enhancement of PCP activity. This points to the cell surface as a physiological site of PCPE-1 action.  相似文献   

16.
The alphaherpesvirus pseudorabies virus (PrV) has been shown to attach to cells by interaction between the viral glycoprotein gC and cell membrane proteoglycans carrying heparan sulfate chains (HSPGs). A secondary binding step requires gD and presumably another, hitherto unidentified cellular receptor. By use of a virus overlay protein binding assay (VOPBA), cosedimentation analyses, and affinity chromatography, we identified three species of cell membrane constituents that bind PrV. By treatment with EDTA, peripheral HSPGs of very high apparent molecular mass (>200 kDa) could be extracted from Madin-Darby bovine kidney cells. Binding of PrV to these HSPGs in the VOPBA was sensitive to enzymatic digestion with heparinase or papain. Cosedimentation analyses indicated that binding between PrV and high-molecular-weight HSPG depended on the presence of gC in the virion. In addition, adsorption of radiolabeled PrV virions to cells could be inhibited by the addition of purified high-molecular-weight HSPG. By using urea extraction buffer, a second species of HSPG of approximately 140 kDa could be solubilized. Binding of PrV to this HSPG in the VOPBA was also dependent on the presence of heparan sulfate, since reactivity was abolished after suppression of glycosaminoglycan biosynthesis with NaClO3 and after heparinase treatment. In addition to HSPG, in cellular membrane extracts obtained by treatment with mild detergent, a 85-kDa membrane protein was demonstrated to bind PrV in the VOPBA and affinity chromatography. In summary, we identified three species of cell membrane constituents that bind PrV: a peripheral HSPG of high molecular weight, an integral HSPG of approximately 140 kDa, and an integral membrane protein of 85 kDa. It is tempting to speculate that interaction between PrV and the two species of HSPG mediates primary attachment of PrV and that the 85-kDa protein is involved in a subsequent attachment step.  相似文献   

17.
Human papillomavirus infection requires cell surface heparan sulfate   总被引:2,自引:0,他引:2  
Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antiserum or heparin indicated that pseudovirions were shifted on the cell surface from a heparin-sensitive into a heparin-resistant mode of binding, possibly involving a secondary receptor. Alpha-6 integrin is not a receptor for HPV-33 pseudoinfection.  相似文献   

18.
The L1 major capsid protein of human papillomavirus (HPV) type 11, a 55-kDa polypeptide, forms particulate structures resembling native virus with an average particle diameter of 50-60 nm when expressed in the yeast Saccharomyces cerevisiae. We show in this report that these virus-like particles (VLPs) interact with heparin and with cell-surface glycosaminoglycans (GAGs) resembling heparin on keratinocytes and Chinese hamster ovary cells. The binding of VLPs to heparin is shown to exhibit an affinity comparable to that of other identified heparin-binding proteins. Immobilized heparin chromatography and surface plasmon resonance were used to show that this interaction can be specifically inhibited by free heparin and dextran sulfate and that the effectiveness of the inhibitor is related to its molecular weight and charge density. Sequence comparison of nine human L1 types revealed a conserved region of the carboxyl terminus containing clustered basic amino acids that bear resemblance to proposed heparin-binding motifs in unrelated proteins. Specific enzymatic cleavage of this region eliminated binding to both immobilized heparin and human keratinocyte (HaCaT) cells. Removal of heparan sulfate GAGs on keratinocytes by treatment with heparinase or heparitinase resulted in an 80-90% reduction of VLP binding, whereas treatment of cells with laminin, a substrate for alpha6 integrin receptors, provided minimal inhibition. Cells treated with chlorate or substituted beta-D-xylosides, resulting in undersulfation or secretion of GAG chains, also showed a reduced affinity for VLPs. Similarly, binding of VLPs to a Chinese hamster ovary cell mutant deficient in GAG synthesis was shown to be only 10% that observed for wild type cells. This report establishes for the first time that the carboxyl-terminal portion of HPV L1 interacts with heparin, and that this region appears to be crucial for interaction with the cell surface.  相似文献   

19.
Our previous studies demonstrated that the cell culture-grown hepatitis C virus of genotype 2a (HCVcc) uses apolipoprotein E (apoE) to mediate its attachment to the surface of human hepatoma Huh-7.5 cells. ApoE mediates HCV attachment by binding to the cell surface heparan sulfate (HS) which is covalently attached to the core proteins of proteoglycans (HSPGs). In the present study, we further determined the physiological importance of apoE and HSPGs in the HCV attachment using a clinical HCV of genotype 1b (HCV1b) obtained from hepatitis C patients and human embryonic stem cell-differentiated hepatocyte-like cells (DHHs). DHHs were found to resemble primary human hepatocytes. Similar to HCVcc, HCV1b was found to attach to the surface of DHHs by the apoE-mediated binding to the cell surface HSPGs. The apoE-specific monoclonal antibody, purified HSPGs, and heparin were all able to efficiently block HCV1b attachment to DHHs. Similarly, the removal of heparan sulfate from cell surface by treatment with heparinase suppressed HCV1b attachment to DHHs. More significantly, HCV1b attachment was potently inhibited by a synthetic peptide derived from the apoE receptor-binding region as well as by an HSPG-binding peptide. Likewise, the HSPG-binding peptide prevented apoE from binding to heparin in a dose-dependent manner, as determined by an in vitro heparin pull-down assay. Collectively, these findings demonstrate that HSPGs serve as major HCV attachment receptors on the surface of human hepatocytes to which the apoE protein ligand on the HCV envelope binds.  相似文献   

20.
HPV prophylactic vaccination based on VLPs was implemented 7 years ago and has now shown a high degree of efficiency to reduce HPV-induced lesions. Moreover, it was shown that HPV-derived virus-like particles or pseudovirions could be used as gene therapy vectors. As a consequence, characterization of the antigenic structure of HPV capsids is crucial for designing future HPV vaccines with better or broader efficacy and for the design of HPV-derived gene therapy vectors with reduced immunogenicity or vaccination escaping. In this study, we have generated 10 HPV16 FG loop L1 protein mutants and analyzed their ability to self-assemble into VLP, their immunogenicity, and their ability to transduce cells when used as pseudovirions. Most of the mutants had lost their ability to transduce cells at the exception of two chimeric HPV16/31 L1 protein FG loop mutants. Sera from mice immunized with HPV16 L1 wt VLPs very weakly neutralized pseudovirions derived from these two HPV16/31 L1 protein FG loop mutants. These findings suggest that only a few point substitutions within the FG loop are sufficient to generate a new serotype escaping vaccination. As a consequence, derived pseudovirions might be suitable as gene therapy vectors in vaccinated subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号