首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have isolated a mutant of Dictyostelium discoideum, M31, which produces a reduced number of alpha-mannosidase-1 molecules per cell during the developmental program of the organism. We find that several of the glycosidases, a group of lysosomal proteins produced by D. discoideum, are altered in strain M31 and that this strain produces a reduced level of at least three of these activities. These enzymes do not share a common protein subunit but are known to share a common antigenic determinant which is, in part, carbohydrate in nature. In the wild type parent of M31, alpha-mannosidase-1 is modified by the addition of mannose and glucosamine (probably as N-acetylglucosamine) in the molar ratio of 5:2. alpha-Mannosidase-1 was also found to contain phosphoserine/phosphothreonine residues. alpha-Mannosidase-1 and other glycosidases are electrophoretically less negative when isolated from strain M31 than when isolated from wild type cells. The mutation present in M31, modA, appears to affect posttranslational modification, modA is a recessive mutation which we map onto linkage group I.  相似文献   

2.
Antisera have been prepared against two lysosomal enzymes of the cellular slime mold, Dictyostelium discoideum. The two purified enzyme preparations used for immunization, N-acetylglucosaminidase and beta-glucosidase-1, show no cross-contamination with each other and no significant contamination by other lysosomal enzymes. However, antisera raised against either enzyme bind equally well to seven different lysosomal enzymes and show no preference for the enzyme against which they were raised. A total of 10 different antisera have been examined and all show similar results. Preadsorption of antisera with either purified enzyme removes all antibody activity against the other enzyme. Evidence is presented which indicates that the same species of antibodies are responsible for the precipitation of seven lysosomal enzymes. These data are discussed in terms of the proposal that the antigen that is shared by the lysosomal enzymes is a post-translational modification of the enzyme proteins. We have sought to further characterize the distribution of this common antigen among cellular proteins. We show that N-acetylglucosaminidase and beta-glucosidase-1 represent less than 5% of the total common antigen containing proteins in the cell. Precipitation of 35S-labeled cellular proteins from vegetative cells indicates that as much as 15-30% of the total cell protein may possess the common antigen. Preadsorption experiments confirm that all of the proteins immunoprecipitated in these experiments are recognized by the same antibodies that precipitate the lysosomal enzyme activities. Most of the labeled proteins are secreted into the medium along with the lysosomal enzyme activities during axenic growth. During the developmental phase of the life cycle of Dictyostelium, the total amount of the common antigen decreases about 2-fold relative to total cell protein. However, the synthesis of antigenic proteins continues throughout most of development.  相似文献   

3.
There are two isozymes of beta-glucosidase in developing cells of Dictyostelium discoideum. A procedure for screening large numbers of clones for beta-glucosidase activity was utilized to obtain mutations which directly affect the activity. We recovered seven strains which lack both isozymes and four strains with residual activity in which enzymatic and physical properties of both isozymes are altered. Beta-Glucosidase appears to act as a block to selfing in macrocyst formation as shown by the fact that ssite mating type to form macrocyst-like structures. Immunological evidence utilizing antisera prepared against purified beta-glucosidase-1 demonstrates that most of the glycosidases in Dictyostelium discoideum share a common antigenic determinant which appears to be added post-translationally. The two isozymes of beta-glucosidase share common protein subunits but the antigenic determinant is either lacking or masked in beta-glucosidase-2. This may account for some of the enzymatic and physical differences between the two isozymes.  相似文献   

4.
5.
A mutant form of the type I regulatory subunit (RI) of cAMP-dependent protein kinase has been cloned and sequenced (Clegg, C. H., Correll, L. A., Cadd, G. C., and McKnight, G. S. (1987) J. Biol. Chem. 262, 13111-13119) which contains two point mutations in the site B cAMP-binding site, a Gly to Asp at position this report, the effect of each independent mutation on the rate of dissociation of cAMP from RI, the cAMP-mediated activation of holoenzyme and the inducibility of cAMP-responsive genes has been characterized. Dissociation of cAMP from either recombinant wild type RI or the B1 mutant demonstrated biphasic kinetics, indicating two sites with different affinities for cAMP. Dissociation from the B2 subunit, however, was monophasic and very rapid indicating that site B had been destroyed and that the rate of dissociation from site A was increased. The cAMP activation constants (Ka) of the wild type and B1 holoenzymes were 40 and 188 nM, respectively, and demonstrated positive cooperativity, with Hill coefficients of 1.61 for the wild type and 1.67 for B1. The B2 holoenzyme required much greater concentrations of cAMP, 4.7 microM, for half-maximal activation and did not display positive cooperativity. Constitutive expression in mouse AtT20 pituitary cells of the B1 mutant resulted in only a small shift in the Ka for kinase activation in these cells compared with B2 expression which increased the Ka by more than 100-fold. Transient expression of the B1 subunit in human JEG-3 choriocarcinoma cells inhibited forskolin activation of a cAMP-responsive promoter by 35% whereas similar expression of the B2 RI subunit inhibited the response by 90%. These results suggest that the Gly to Asp mutation at amino acid 324 completely blocks cAMP binding to site B whereas the Arg to His mutation at position 332 causes a more subtle alteration in cAMP binding. Expression of either mutant RI in animal cells results in a dominant repression of cAMP-dependent protein kinase activity and cAMP-dependent protein kinase-mediated processes.  相似文献   

6.
The lysosomal disorder galactosialidosis is caused by deficiency of the protective protein in the absence of which the activities of the enzymes beta-galactosidase and neuraminidase are reduced. Aside from its protective function towards the two glycosidases, this protein has cathepsin A-like activity. A point mutation in the protective protein gene, resulting in the substitution of Phe412 with Val in the gene product, was identified in two unrelated patients with the late infantile form of the disease. Expression in COS-1 cells of a protective protein cDNA with the base substitution resulted in the synthesis of a mutant protein that lacks cathepsin A-like activity. The newly made mutant precursor was shown to be partially retained in the endoplasmic reticulum. Only a fraction is transported to the lysosomes where it is degraded soon after proteolytic processing into the mature two-chain form. Since the mutant precursor, contrary to the wild type protein, does not form homodimers, the dimerization process might be a condition for the proper targeting and stable conformation of the protective protein. These results clarify the mechanism underlying the combined deficiency in these patients, and give new insight into the structure-function relationship of the wild type protein.  相似文献   

7.
The recognition by RNase P of precursor tRNAs   总被引:9,自引:0,他引:9  
We have generated mutants of M1 RNA, the catalytic subunit of Escherichia coli RNaseP, and have analyzed their properties in vitro and in vivo. The mutations, A333----C333, A334----U334, and A333 A334----C333 U334 are within the sequence UGAAU which is complementary to the GT psi CR sequence found in loop IV of all E. coli tRNAs. We have examined: 1) whether the mutant M1 RNAs are active in processing wild type tRNA precursors and 2) whether they can restore the processing defect in mutant tRNA precursors with changes within the GT psi CR sequence. As substrates for in vitro studies we used wild type E. coli SuIII tRNA(Tyr) precursor, and pTyrA54, a mutant tRNA precursor with a base change that could potentially complement the U334 mutation in M1 RNA. The C333 mutation had no effect on activity of M1 RNA on wild type pTyr. The U334 mutant M1 RNA, on the other hand, had a much lower activity on wild type pTyr. However, use of pTyrA54 as substrate instead of wild type pTyr did not restore the activity of the U334 mutant M1 RNA. These results suggest that interactions via base pairing between nucleotides 331-335 of M1 RNA and the GT psi CG of pTyr are probably not essential for cleavage of these tRNA precursors by M1 RNA. For assays of in vivo function, we examined the ability of mutant M1 RNAs to complement a ts mutation in the protein component of RNaseP in FS101, a recA- derivative of E. coli strain A49. In contrast to wild type M1 RNA, which complements the ts mutation when it is overproduced, neither the C333 nor the U334 mutant M1 RNAs was able to do so.  相似文献   

8.
The specific activities of the enzymes alpha-mannosidase and N-acetylglucosaminidase increase immediately after the initiation of the development of bacterially grown cell cultures of Dictyostelium discoideum. The regulation of these two enzymes was found to be dissociable in the developmental timer mutant, FM-1, which aggregates 4.5 h earlier than wild-type cells due to the absence of the first rate-limiting component of the preaggregative period. The increase in alpha-mannosidase activity occurs in the absence of the first rate-limiting component, but the increase in N-acetylglucosaminidase activity does not. These results indicate the following: (1) the increase in the specific activity of alpha-mannosidase is not related to the timing of subsequent developmental stages; (2) the increase in the specific activity of N-acetylglucosaminidase is not necessary for the subsequent developmental program; and (3) either the increase in the specific activity of N-acetylglucosaminidase is dependent upon progress through the first rate-limiting component, or the increase in this enzyme activity and the first rate-limiting component are both dependent upon an early event for which FM-1 is defective. In addition to early development, we monitored the two enzyme activities during dedifferentiation. The results demonstrate that there is no difference between dedifferentiating wild-type cells and dedifferentiation-defective mutant HI-4 cells. Changes in enzyme specific activity accompanying dedifferentiation are dependent upon the composition of the dedifferentiation-inducing media and are consistent with the levels of these enzymes observed in cells growing in the different nutrient media.  相似文献   

9.
We investigated the mechanism of selenium (Se) tolerance using an Arabidopsis thaliana knockout mutant of a sulfate transporter, sultr1;2. Se stress inhibited plant growth, decreased chlorophyll contents, and increased protein oxidation and lipid peroxidation in the wild type, whereas the sultr1;2 mutation mitigated damage of these forms, indicating that sultr1;2 is more tolerant of Se than the wild type is. The accumulation of symplastic Se was suppressed in sultr1;2 as compared to the wild type, and the chemical speciation of Se in the mutant was different from that in the wild type. Regardless of Se stress, the activities of ascorbate peroxidase, catalase, and peroxidase in the mutant were higher than in the wild type, while the activity of superoxide dismutase in the mutant was the same as in the wild type. These results suggest that the sultr1;2 mutation confers Se tolerance on Arabidopsis by decreasing symplastic Se and maintaining antioxidant enzyme activities.  相似文献   

10.
Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex that is composed of the products of the UL5, UL52, and UL8 genes. A subcomplex consisting of the UL5 and UL52 proteins retains all the enzymatic activities exhibited by the holoenzyme in vitro. The UL52 protein contains a putative zinc finger at its C terminus which is highly conserved among both prokaryotic and eukaryotic primases. We constructed a mutation in which two highly conserved cysteine residues in the zinc finger motif were replaced with alanine residues. A UL52 expression plasmid containing the mutation in the zinc finger region is unable to support the growth of a UL52 mutant virus in a transient complementation assay. Wild type and mutant UL5.UL52 subcomplexes were purified from insect cells infected with recombinant baculoviruses. Surprisingly, the mutant protein was severely affected in all biochemical activities tested; no helicase or primase activities could be detected, and the mutant protein retains only about 9% of wild type levels of single-stranded DNA-dependent ATPase activity. Gel mobility shift assays showed that DNA binding is severely affected as well; the mutant subcomplex only retains approximately 8% of wild type levels of binding to a forked substrate. On the other hand, the mutant protein retains its ability to interact with UL5 as indicated by copurification and with UL8 as indicated by a supershifted band in the gel mobility shift assay. In addition, the ability of individual subunits to bind single-stranded DNA was examined by photo cross-linking. In the wild type UL5.UL52 subcomplex, both subunits are able to bind an 18-mer of oligo(dT). The mutant subcomplex was severely compromised in the ability of both UL5 and UL52 to bind the oligonucleotide; total cross-linking was only 2% of wild type levels. These results are consistent with the proposal that the putative zinc binding motif of UL52 is required not only for binding of the UL52 subunit to DNA and for primase activity but also for optimal binding of UL5 to DNA and for the subsequent ATPase and helicase activities.  相似文献   

11.
A mutant clone resistant to dibutyryl cyclic AMP was isolated from S49 mouse lymphoma cells. The mutant expressed a form of cyclic AMP-dependent protein kinase distinguishable from wild type kinase by its decreased sensitivity to activation by cyclic AMP and its increased thermal lability. Hybrids formed between mutant and wild type cells were resistant to dibutyryl cyclic AMP and expressed both mutant and wild type activities in about equal amount. The parent mutant cells also appeared to express wild type kinase activity, but at a lower level. We conclude that wild type S49 cells have and express two identical alleles for the regulatory subunit of protein kinase, one of which has undergone mutation in the mutant cells.  相似文献   

12.
A mutation (pde1) was detected by suppressor activity on the CYR3 mutation which caused cAMP requirement for growth at 35 degrees C by the alteration of cAMP-dependent protein kinase. The pde1 mutant produced a significantly reduced level of cyclic nucleotide phosphodiesterase activity when assayed with 500 microM cAMP. Two cyclic nucleotide phosphodiesterases, I and II, were identified. Approximate molecular weights of these enzymes were 60,000 and 110,000, and the apparent Km values were 100 and 0.4 microM, respectively. The pde1 mutant was deficient in phosphodiesterase I activity. The cells carrying the pde1 mutation accumulated several times over the intracellular cAMP found in wild type cells. Phosphodiesterase I was not essential for growth of yeast cells, but controlled the intracellular cAMP levels in wild type and various mutant strains.  相似文献   

13.
The yellow-green 6 (yg(6)) mutation in tomato (Lycopersicon esculentum Mill.) is controlled by a single recessive gene with pleiotropic effects. The syndrome of characters associated with the mutation are enhanced stem elongation, reduced chlorophyll content and absence of detectable anthocyanins. We now have shown that the mutant also has fewer lateral roots than the wild type and higher l-phenylalanine ammonia-lyase (E.C. 4.3.1.5) activity than the normal tomato. These traits of the mutant closely resemble those induced in many plants by the application of gibberellic acid which suggests that the phenotypic expressions of the mutation might in some manner be related to the endogenous level or activity of the gibberellins. In support of this premise, data are presented which show that the characters of the mutant can be induced in the wild type tomato by application of gibberellic acid. Conversely, several traits of the wild type can be induced in the mutant by an inhibitor of gibberellin hiosynthesis, Phosfon. In addition, an embryoless barley half-seed bioassay for the gibberellins and gas-liquid chromatography indicated that the mutant contained at least three times as much total gibberellin as the wild type plant.  相似文献   

14.
Site-specific mutagenesis was used to modify an amino acid residue of the catalytic trimer of aspartate transcarbamoylase thought to be at the active site. Tyrosine 165 of the catalytic chain was replaced by a serine residue. This mutation substantially reduces but does not entirely abolish the catalytic activity of the holoenzyme and the isolated catalytic trimer. Km for aspartate for the mutant catalytic trimer is 12-fold higher than for the wild type. Vmax is reduced by a factor of 4 and Kd for carbamoylphosphate is increased 3-fold in the mutant. Although these results suggest that tyrosine 165 is at the active site, they demonstrate that the residue is not essential for catalysis.  相似文献   

15.
We have studied the assembly of Escherichia coli RNase P from its catalytic RNA subunit (M1 RNA) and its protein subunit (C5 protein). A mutant form of the protein subunit, C5A49, has been purified to apparent homogeneity from a strain of E. coli carrying a thermosensitive mutation in the rnpA gene. The heat inactivation kinetics of both wild-type and mutant holoenzymes are similar, an indication of equivalent thermal stability. However, when the catalytic efficiencies of the holoenzymes were compared, we found that the holoenzyme containing the mutant protein had a lower efficiency of cleavage than the wild-type holoenzyme at 33, 37, and 44 degrees C. We then explored the interaction of M1 RNA and C5 protein during the assembly of the holoenzyme. The yield of active holoenzyme obtained by reconstitution with wild-type M1 RNA and C5A49 protein in vitro can be considerably enhanced by the addition of excess M1 RNA, just as it can be in vivo. We concluded that the Arg-46----His-46 mutation in the C5A49 protein affects the ability of the protein to participate with M1 RNA in the normal assembly process of RNase P.  相似文献   

16.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) plays a central metabolic role in photosynthetic eukaryotes, and its catabolism is a crucial process for the nutrient economy of higher plants. The rubisco holoenzyme is assembled from eight chloroplast-encoded large subunits and eight nuclear-encoded small subunits. We have identified a cluster of conserved tyrosines at the interface between subunits (comprising Y67, Y68, and Y72 from the betaA-betaB loop of the small subunit and Y226 from the large subunit) that may contribute to holoenzyme stability. To investigate the role of these tyrosines in rubisco structure and in vivo degradation, we have examined site-directed mutants of these residues (Y67A, Y68A, Y72A, and Y226L) in Chlamydomonas reinhardtii. Even if all mutant strains were able to grow photoautotrophically, they exhibited a reduction in rubisco activity and/or the level of expression, especially the Y67A and Y72A mutants. Besides, all mutant rubiscos were inactivated at a lower temperature than the wild type. The kinetics of proteolysis of the mutant enzymes with subtilisin revealed structural alterations, leading to facilitated disassembly (in the cases of Y67A and Y72A) or aggregation propensity (for Y68A and Y226L). When subjected to oxidative stress in vivo through exposure of liquid cultures to hydrogen peroxide, all mutant strains degraded rubisco at a faster rate than the wild type. These results demonstrate that the tyrosine cluster around the betaA-betaB loop of rubisco small subunit plays a stabilizing role by affecting the catalytic activity and the degradation rate of the enzyme in stressed cells.  相似文献   

17.
Ethyl methane sulfonate treatment was used to induce a mutation in the nuclear gene encoding the chloroplast isozyme of phosphoglucose isomerase in Clarkia xantiana. The mutation, which proved allelic to wild type activity, was backcrossed to wild type for five generations so that the two could be compared in a near isogenic background. An immunological analysis showed that the mutant, when homozygous, reduced the activity of the isozyme by about 50%. In contrast to wild type, the mutant showed little change in leaf starch level over a diurnal period or following a 72-hour continuous light treatment. By the end of the diurnal light period, the mutant accumulated only about 60% as much starch as wild type. However, mutant leaves had an increased sucrose level presumably because photosynthate was directly exported from the chloroplasts. The mutant also exhibited reduced leaf weight. These changes in metabolism and growth suggest that the wild type level of plastid phosphoglucose isomerase activity is necessary to achieve wild type carbohydrate status.  相似文献   

18.
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.  相似文献   

19.
Cancer-associated mutations in the BRCT domain of BRCA1 (BRCA1-BRCT) abolish its tumor suppressor function by disrupting interactions with other proteins such as BACH1. Many cancer-related mutations do not cause sufficient destabilization to lead to global unfolding under physiological conditions, and thus abrogation of function probably is due to localized structural changes. To explore the reasons for mutation-induced loss of function, the authors performed molecular dynamics simulations on three cancer-associated mutants, A1708E, M1775R, and Y1853ter, and on the wild type and benign M1652I mutant, and compared the structures and fluctuations. Only the cancer-associated mutants exhibited significant backbone structure differences from the wild-type crystal structure in BACH1-binding regions, some of which are far from the mutation sites. Backbone differences of the A1708E mutant from the liganded wild type structure in these regions are much larger than those of the unliganded wild type X-ray or molecular dynamics structures. These BACH1-binding regions of the cancer-associated mutants also exhibited increases in their fluctuation magnitudes compared with the same regions in the wild type and M1562I mutant, as quantified by quasiharmonic analysis. Several of the regions of increased fluctuation magnitude correspond to correlated motions of residues in contact that provide a continuous path of fluctuating amino acids in contact from the A1708E and Y1853ter mutation sites to the BACH1-binding sites with altered structure and dynamics. The increased fluctuations in the disease-related mutants suggest an increase in vibrational entropy in the unliganded state that could result in a larger entropy loss in the disease-related mutants upon binding BACH1 than in the wild type. To investigate this possibility, vibrational entropies of the A1708E and wild type in the free state and bound to a BACH1-derived phosphopeptide were calculated using quasiharmonic analysis, to determine the binding entropy difference DeltaDeltaS between the A1708E mutant and the wild type. DeltaDeltaS was determined to be -4.0 cal mol(-1) K(-1), with an uncertainty of 2 cal mol(-1) K(-1); that is, the entropy loss upon binding the peptide is 4.0 cal mol(-1) K(-1) greater for the A1708E mutant, corresponding to an entropic contribution to the DeltaDeltaG of binding (-TDeltaDeltaS) 1.1 kcal mol(-1) more positive for the mutant. The observed differences in structure, flexibility, and entropy of binding likely are responsible for abolition of BACH1 binding, and illustrate that many disease- related mutations could have very long-range effects. The methods described here have potential for identifying correlated motions responsible for other long-range effects of deleterious mutations.  相似文献   

20.
The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号