首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

2.
3.
The beta subunits of the two gonadotropins (GTH1 and GTH2) and of the thyroid-stimulating hormone (TSH) of a chondrostean fish, Acipenser baeri, were cloned. These new sequences and selected representative members of beta subunits of vertebrate glycoprotein hormones, including tetrapod follicle-stimulating hormones (FSH) and luteinizing hormones (LH), allowed us to infer the phylogenetic relationships within this family. Both distance matrix and maximum parsimony methods were used on both nucleotide and amino acid sequences, with bootstrapping evaluation over 1000 replicates. The four trees obtained had highly similar topologies. In each case, three monophylogenetic lineages, TSH, GTH1-FSH, and GTH2-LH were clearly identified. The three monophylogenetic lineages were supported by 21-23 specific characters at the amino acid level, out of a total of 121 characters. The resolved topologies within each monophyletic hormone cluster were congruent with the known phylogenetic relationships between the related species. The inferred parental relationships within gonadotropins are in agreement with data concerning their biological functions. The present study demonstrates that GTH1 and GTH2 are the actinopterygian homologues of tetrapod FSH and LH, respectively.  相似文献   

4.
5.
Summary The nucleotide sequences of the chloroplast genes for the alpha, beta and epsilon subunits of wheat chloroplast ATP synthase have been determined. Open reading frames of 1512 bp, 1494 bp and 411 bp are deduced to code for polypeptides of molecular weights 55201, 53796 and 15200, identified as the alpha, beta and epsilon subunits respectively by homology with the subunits from other sources and by amino acid sequencing of the epsilon subunit. The genes for the beta and epsilon subunits overlap by 4 bp. The gene for methionine tRNA is located 118 bp downstream from the epsilon subunit gene. Comparisons of the deduced amino acid sequences of the alpha and beta subunits with those from other species suggest regions of the proteins involved in adenine nucleotide binding.  相似文献   

6.
D E Rawlings 《Gene》1988,69(2):337-343
The structural genes (nifD and nifK) for the alpha and beta subunits of the molybdenum-iron (MoFe) protein of the Thiobacillus ferrooxidans dinitrogenase have been sequenced. The Mr values deduced from the nucleotide sequences are 54,919 and 57,901 for the alpha and beta subunits, respectively. The amino acid sequences of both subunits were quantitatively compared with the equivalent subunits from other bacteria. Distinct areas of amino acid homology were found between the alpha and beta subunits of T. ferrooxidans.  相似文献   

7.
Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.  相似文献   

8.
The nucleotide sequence of human thyroid stimulating hormone (hTSH) gene can encode a protein of 138 amino acids. However, the mature polypeptide is lacking 6 amino acids of the carboxyl-terminus (C-terminus), suggesting posttranslational cleavage of these residues. To analyze a possible function of these 6 amino acids, we expressed two hTSH beta cDNAs with or without the 6 codons for C-terminal extension, together with alpha subunit cDNA in CHO cells, and determined the amino acid sequence of C-terminus of hTSH beta. hTSH beta propeptides without C-terminal extension were glycosylated, associated with alpha subunit and secreted, as normal propeptides were, and its heterodimer with alpha subunit showed normal TSH bioactivity in FRTL-5 bioassay. These data indicate that the 6 amino acid C-terminal extension is not necessary for the hTSH maturation in the process of the biosynthesis and for its bioactivity.  相似文献   

9.
The beta subunits of the two pituitary gonadotropins LH and FSH and of thyroid-stimulating hormone (TSH) were cloned from Australian lungfish (Neoceratodus forsteri) pituitary glands. These three glycoprotein hormone beta subunits possess the main characteristics common to their counterparts in other vertebrates. Taking advantage of the phylogenetic position of the lungfish, close to the root of tetrapods, a maximum parsimony tree was inferred from these new sequences and sequences from representatives of the diversity of vertebrates. The topology of the tree was imposed so that it reflected as closely as possible the real evolutionary history of the subunits. This tree was used to estimate the relative evolution rate of the three subunits in vertebrates. Cumulated amino acid substitutions from the basal subunit node (ancestral subunit sequence) to the species node were calculated and compared. It showed that a burst in evolutionary rate occurred for the LHbeta subunit in the tetrapod lineage sometime after the emergence of amphibians. The rate of evolution of the LHbeta subunit was particularly high throughout the radiation of mammals while FSH and TSHbeta subunits kept quite stable in this lineage. A burst in evolutionary rate was also observed for the FSHbeta subunit in the lineage leading to teleosts sometime after the emergence of chondrosteans and the dynamic of evolution was high throughout the radiation of teleosts. These results were consistent with data obtained from pairwise comparisons.  相似文献   

10.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

11.
We isolated a putative gene for the thyrotropin beta subunit (TSHbeta) from two types of genomic libraries of the Japanese crested ibis, Nipponia nippon. Exon-intron structure was deduced by comparing the determined sequence with those of TSH beta cDNA of other birds. The deduced amino acid sequence shows extensive similarities to those of the other birds, which assures our assumption that the acquired nucleotide sequence represents the TSHbeta gene. The assembled genomic fragment is 4192 bp in size and consists of 1937 bp of putative 5' flanking region followed by exon-intron structure with three exons and two introns, similar to those observed in rat, human and goldfish counterparts. Locations of introns are also similar to those in mammals and goldfish. Comparison of the 5' flanking region of the ibis TSHbeta gene with those of mammals reveals that several regulatory sequences, such as negative thyroid hormone responsive element (nTRE), Pit-1 responsive element, and AP-1 responsive element, which were characterized in mammalian TSHbeta genes, are also found in the promoter region. This is the first report on the exon-intron structure and 5' flanking region of the TSHbeta gene in an avian species.  相似文献   

12.
A new procedure is described for the isolation of the alpha and beta chains of the hormone. In this method, thenative hormone is incubated in acidic urea and the chains are then separated by ion-exchange chromatography. The amino-terminal residue of the alpha subunit is valine. The carboxy-terminal end of the alpha subunit is of variable length. No amino-terminal residue was detected for the beta chain; glycine was found at its carboxy-terminal end by the selective titration method. The amino acid and carbohydrate compositions of the hormone and both subunits are presented. The beta chain contains sialic acid and is devoid of galactosamine in contrast to the beta subunits of other species. Contamination of our human lutenizing hormone preparation by other pituitary glycoprotein hormones such as thyroid-stimulating hormone and follicle-stimulating hormone amounted to 0.5 and 0.25 percent by weight respectively. Cross-contamination of the initial alpha and beta subunit preparations was measured by specific radioimmunoassays and amounted to 4.1 and 2 percent by weight respecitively. Further extensive purification of these subunit preparations was then performed by means of affinity chromatography using immunosorbants. The final preparations exhibited a residual cross-contamination amounting to 0.2 and 0.02 percent by weight for the alpha and beta subunits respectively.  相似文献   

13.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

14.
《The Journal of cell biology》1989,109(4):1429-1438
Chorionic gonadotropin (CG) and lutropin (LH) are members of a family of glycoprotein hormones that share a common alpha subunit but differ in their hormone-specific beta subunits. The glycoprotein hormone beta subunits share a high degree of amino acid homology that is most evident for the LH beta and CG beta subunits having greater than 80% sequence similarity. However, transfection studies have shown that human CG beta and alpha can be secreted as monomers and can combine efficiently to form dimer, whereas secretion and assembly of human LH beta is less efficient. To determine which specific regions of the LH beta and CG beta subunits are responsible for these differences, mutant and chimeric LH beta-CG beta genes were constructed and transfected into CHO cells. Expression of these subunits showed that both the hydrophobic carboxy-terminal seven amino acids and amino acids Trp8, Ile15, Met42, and Asp77 together inhibit the secretion of LH beta. The carboxy-terminal amino acids, along with Trp8, Ile15, Met42, and Thr58 are implicated in the delayed assembly of LH beta. These unique features of LH beta may also play an important role in pituitary intracellular events and may be responsible for the differential glycosylation and sorting of LH and FSH in gonadotrophs.  相似文献   

15.
Different point mutations have been identified in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene that are associated with variant phenotypes of generalized thyroid hormone resistance (GTHR). In most cases of GTHR, heterozygotes are affected; a single mutant allele results in the inhibition of the function of normal thyroid hormone receptors. We report here a novel genetic abnormality, a 3-basepair (bp) deletion in the T3-binding domain of the beta-receptor in a kindred, S, with GTHR. One patient, S1, was the product of a consanguineous union of two heterozygotes and was homozygous for this defect. Heterozygotes from kindred S harbored a CAC deletion at nucleotides 1295-1297, which resulted in the deduced loss of amino acid residue threonine at codon 332, and they displayed elevated free T4 levels and inappropriately normal TSH levels characteristic of other kindreds with GTHR. However, patient S1, who had two mutant alleles, had markedly elevated TSH and free T4 levels and displayed profound abnormalities in brain development and linear growth. A fibroblast c-erbA beta cDNA extending from codon 175 to stop codon 457 was cloned from patient S1, sequenced, and used to create a full-length mutant cDNA. The kindred S mutant receptor was synthesized in vitro and did not bind T3. This mutant receptor did bind with similar avidity as the wild-type human beta-receptor to thyroid hormone response elements of the human TSH beta (-12 to 43 bp) and rat GH (-188 to -160 bp) genes. Kindred S showed the effect in man of heterozygous and homozygous expression of a dominant negative form of c-erbA beta.  相似文献   

16.
Hereditary hypothyroidism caused by thyroid-stimulating hormone (TSH) deficiency is a rare autosomal recessive disease. Affected individuals show symptoms of severe mental and growth retardation that can be prevented by early administration of exogenous thyroid hormone. In this paper, we describe two related Greek families with three children affected by congenital TSH-deficient hypothyroidism. Sequence analysis of the TSH beta-subunit gene (TSHB) showed that the mutation responsible for the hypothyroidism in these families is a nonsense mutation in exon 2. This mutation is a G-to-T transversion at nucleotide 94 that destroys the only TaqI site in the TSHB-coding region and gives rise to a novel 8.5-kb TaqI fragment. Restriction analysis showed that the three affected children are homozygous for the 8.5-kb allele and that the four parents and two unaffected children are heterozygous. This mutation gives rise to a truncated peptide which includes only the first 11 of 118 amino acids of the mature TSHB peptide.  相似文献   

17.
18.
Singh LS  Kalafatis M 《Biochemistry》2002,41(28):8935-8940
Casein kinase II (CKII) is a ubiquitous protein kinase composed of two subunits, alpha and beta, that can use both ATP and GTP as phosphoryl donors. Two genes located on two separate chromosomes were identified for CKIIalpha: one on chromosome 20 band 13 with an approximate size of 20 kb and a second on chromosome 11 band 15.5-p15.4 that is the same size as the cDNA of locus 20 kb (1.2 kb) and does not contain any introns. The two genes differ in four amino acids. Recently, it has been demonstrated that a membrane-associated platelet-derived CKII phosphorylates coagulation factor Va. The mRNA encoding the platelet CKII was isolated from fresh human platelets, and the corresponding cDNAs encoding the alpha and beta subunits of human platelet CKII were produced and sequenced. The cDNA for platelet CKIIalpha was found to be 99.7% homologous to the CKIIalpha intronless gene, having the same characteristic amino acid residues at positions 128, 256, 287, and 351. However, the cDNA of platelet CKIIalpha has a different amino acid at position 236 (Arg --> His), which is not found in the intronless gene. The cDNA of the CKIIbeta subunit was completely identical with the sequence of the CKIIbeta subunit isolated from other tissues. Since platelets arise from megakaryocytes, mRNA was isolated from the megakaryocytic cell line MEG-01 and the cDNA for CKIIalpha was cloned and sequenced. The cDNA was found to be identical to the intronless gene found in platelets. We have also investigated the expression of the intronless gene in several other cell lines. Expression of the intronless gene was only found in cell line MEG-01. Our data demonstrate expression of the CKIIalpha intronless gene in megakaryocytes and platelets.  相似文献   

19.
The amino acid sequences of pike eel gonadotropin alpha and beta subunits have been determined by standard sequencing analytical methods. The alpha subunit is composed of 93 amino acid residues while the beta subunit comprises 113 amino acid residues. All the invariant half-cystine residues are in the same positions as those found in other gonadotropins. It is noteworthy that the first, putative glycosylation site (Asn56) found in the alpha subunit of other gonadotropins was replaced by Asp56 in the alpha subunit of pike eel gonadotropin. Similarity analyses indicate that both subunits are structurally more similar to other known fish gonadotropin subunits than to those of the mammalian gonadotropins.  相似文献   

20.
Lysosomal beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52) occurs in two major isozyme forms, hexosaminidase A (alpha beta) and hexosaminidase B (beta beta). Although dimer formation is required for enzymatic activity, both subunits contain active sites which share many common substrates. However, the alpha subunit alone confers on hexosaminidase A the specificity for negatively charged substrates, e.g. GM2 ganglioside. Recently, a point mutation, producing a single amino acid substitution in the alpha subunit (Arg178-His), has been found to be associated with the B1 variant phenotype of Tay-Sachs disease (Ohno, K., and Suzuki, K. (1988) J. Neurochem. 50, 316-318). This variant is characterized by normal levels of hexosaminidase A as measured by a common artificial substrate, but an absence of activity toward alpha subunit-specific substrates. However, because of the presence of an active beta subunit in the mutant hexosaminidase A, it has not been possible to determine whether the affected alpha subunit has undergone a change in substrate specificity or become totally inactive. In order to define the full effect of the B1 mutation we have taken advantage of the common evolutionary origin of the genes coding for the alpha and beta subunits. Since the B1 mutation occurs in a region of extended identity between the two subunits, we have duplicated the Arg178-His mutation in a cDNA coding for the human beta subunit (Arg211-His). By expression of the mutant construct in monkey COS cells we have been able to examine the effect of this mutation on beta subunits which are capable of forming stable, active homodimers, an experiment that could not readily be accomplished with heterodimeric hexosaminidase A. Our data show that beta homodimers containing the Arg211-His substitution are formed and are transported into the lysosome in a manner identical to that of normal pro-hexosaminidase B. However, the mutant homodimers are processed at a slower rate and are less stable in the lysozyme. Their most striking feature was a total lack of normal hexosaminidase B activity. We conclude that while the effect of the Arg178-His substitution is not strictly limited to the active site, the severe B1 phenotype results from a totally inactive alpha-subunit in hexosaminidase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号