首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipase‐catalyzed irreversible transesterification procedure using vinyl esters was applied to the resolution of racemic 2‐phenoxypropanoic acids. Aspergillus niger lipase showed high enantioselectivities and reasonable reaction rates. The enantioselectivity was found to be affected profoundly by several variables, e.g., the alcohol as nucleophile, the organic solvent used, and the reaction temperature. A gram‐scale resolution of (RS)‐2‐phenoxypropanoic acid was achieved after optimization of the reaction conditions. Then this irreversible transesterification procedure was applied to the resolution of some related 2‐substituted carboxylic acids. Thus, racemic 2‐methoxy‐2‐phenylacetic acid was resolved via the A. niger lipase‐catalyzed transesterification of the corresponding vinyl ester. 2‐Phenylpropanoic acid and 2‐phenylbutanoic acid were resolved using Pseudomonas sp. lipase. A gram‐scale resolution of 2‐phenylbutanoic acid was achieved by this procedure coupled with the porcine liver esterase‐catalyzed hydrolysis of the resulting methyl ester. Chirality 11:554–560, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
The gene encoding dimethyl sulfoxide (DMSO) reductase, which contains a molybdenum cofactor, of the phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans was isolated using an oligonucleotide probe, which was synthesized based on a internal amino acid sequence of the purified enzyme. The DMSO reductase gene coded for 822 amino acids (2466 base pairs, Mr = 89,206) as a precursor form having a signal peptide of 42 amino acids. The deduced amino acid sequence had high homology with those of some enzymes containing a molybdenum cofactor: trim ethyl amine N-oxide reductase (48%), biotin sulfoxide reductase (44%), and DMSO reductase (29%) of Escherichia coli.  相似文献   

3.
The ability to produce (R)- or (S)-β-phenylalanine ethyl ester (3-amino-3-phenylpropionic acid ethyl ester, BPAE) from racemic BPAE through stereoselective hydrolysis was screened for in BPAE-assimilating microorganisms. Sphingobacterium sp. 238C5 and Arthrobacter sp. 219D2 were found to be potential catalysts for (R)- and (S)-BPAE production, respectively. On a 24-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Sphingobacterium sp. 238C5 as the catalyst, 1.15% (w/v) (R)-BPAE (60 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 46%. On a 48-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Arthrobacter sp. 219D2 as the catalyst, 0.87% (w/v) (S)-BPAE (45 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 35%. The enzyme stereoselectively hydrolyzing (S)-BPAE was purified to homogeneity from the cell-free extract of Sphingobacterium sp. 238C5. The enzyme was a monomeric protein with a molecular mass of about 42,000. The enzyme catalyzed hydrolysis of β-phenylalanine esters, while the common aliphatic and aromatic carboxylate esters were not catalyzed.  相似文献   

4.
The effect of a chiral centre in the acyl group on the resolution of esters prepared from a racemic alcohol was investigated. R-2-chloropropionic acid afforded a higher enantiomeric ratio than S-2-chioropropionic acid in the hydrolysis of the corresponding esters of racemic 1-phenylethanol catalyzed by Candida cylindracea lipase. Even when a mixture of esters prepared from racemic acid and racemic alcohol was used for resolution of the alcohol, a noteworthy high enantioselectivity was observed. The hydrolysis of a bichiral ester offers an amplification in the resolution of enantiomers of alcohols by the combination of a chemical diastereoselectivity and an enzymatic enantio- and diastereoselectivity.  相似文献   

5.
A new 5′-nuclease polymerase chain reaction (PCR) system for the detection and quantification of Citrobacter freundii and C. braakii was developed with primers and the probe oriented to a specific region of the cfa gene encoding a cyclopropane fatty acid synthase. The qualitative variant of the method consisted of a conventional PCR with end-point fluorimetry or agarose gel electrophoresis, and the quantitative variant used kinetic real-time PCR measurement. The PCR system was specific for C. freundii and C. braakii, detecting neither other Citrobacter spp. nor other enteric bacteria (Escherichia coli, Salmonella enterica, and others). The detection limit of the qualitative variant of the method was 103 cfu/mL when the amplification was followed by fluorimetry and 104 cfu/mL when the amplification was followed by gel electrophoresis. The real-time PCR variant of the method facilitated quantification over a range of concentrations from 102 to 108 cfu/mL, with Escherichia coli (106 cfu/mL) and Salmonella enterica (106 cfu/mL) having no effect on the quantification.  相似文献   

6.
DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes   总被引:1,自引:0,他引:1  
The anaerobic rumen bacterium Wolinella succinogenes was able to grow by respiration with dimethylsulphoxide (DMSO) as electron acceptor and formate or H2 as electron donors. The growth yield amounted to 6.7 g and 6.4 g dry cells/mol DMSO with formate or H2 as the donors, respectively. This suggested an ATP yield of about 0.7 mol ATP/mol DMSO. Cell homogenates and the membrane fraction contained DMSO reductase activity with a high K m (43 mM) for DMSO. The electron transport from H2 to DMSO in the membranes was inhibited by 2-(heptyl)-4-hydroxyquinoline N-oxide, indicating the participation of menaquinone. Formation of DMSO reductase activity occurred only during growth on DMSO, presence of other electron acceptors (fumarate, nitrate, nitrite, N2O, and sulphur) repressed the DMSO reductase activity. DMSO can therefore be used by W. succinogenes as an acceptor for phosphorylative electron transport, but other electron acceptors are used preferentially.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DMNH 2 Reduced DMN - DMS Dimethylsulphide (CH3)2S - DMSO Dimethylsulphoxide (CH3)2SO - HQNO 2-(Heptyl)-4-hydroxyquinoline-N-oxide - TMAO Trimethylamine-N-oxide - Y s Growth yield for substrate S  相似文献   

7.
8.
Dimethylsulphoxide (DMSO) and trimethylamine oxide (TMAO) sustained anaerobic growth of Proteus vulgaris with the non-fermentable substrate lactate. Cytoplasmic membrane vesicles energized by electron transfer from formate to DMSO displayed anaerobic uptake of serine, which was hindered by metabolic inhibitors known to destroy the proton motive force. This showed that DMSO reduction was coupled with a chemiosmotic mechanism of energy conversion; similar data for TMAO respiration have been presented previously. All biochemical tests applied indicated that the oxides were reduced by the same reductase system. The DMSO and TMAO reductase activities showed the same mobility on ion-exchange chromatography, and polyacrylamide disc gel electrophoresis (pH 8.9), gradient gel electrophoresis, and gel isoelectric focusing; mol. wt. and pI determined were 95,000 and 4.6, respectively. DMSO inhibited reduction of [14C]TMAO in vesicles. The reductase was inducible to a certain extent; both oxides being equally efficient as inducers. TMAO was reduced at a higher rate than DMSO, explaining faster growth of cells and increased uptake of serine in vesicles with TMAO as electron acceptor. Comparative studies with Escherichia coli also gave evidence for common TMAO and DMSO reductase systems.Abbreviations TMAO trimethylamine oxide - DMSO dimethylsulphoxide  相似文献   

9.
The oxidation of aromatic sulfides with achiral oxidizing agents, e.g., sodium metaperiodate (NaIO4) and hydrogen peroxide (H2O2) in the binding domain of bovine serum albumin (BSA), furnished a strong asymmetric bias (max 81%) of the product sulfoxides in fairly high chemical yields. The kinetic resolution of racemic aromatic sulfoxides was also carried out in the chiral binding domain, and the remaining unchanged sulfoxides showed optical purities ranging over 1–33% at ca. 50% completion of oxidation. The combination of the two stereoselective oxidations above mentioned produced several optically active sulfoxides of >90% optical purity in ca. 50% chemical yield. The present method constitutes a successful biomimetic approach to achieving stereoselectivities as high as obtained by sulfur-oxidizing microorganisms.  相似文献   

10.
Summary The resolution of racemic ketoprofen amide by whole cells of Rhodococcus erythropolis MP 50 and Rhodococcus sp. C3II was studied. With both strains racemic ketoprofen amide was converted to S-ketoprofen with an enantiomeric excess > 97 % at a conversion rate up to 40 % of the theoretical value. The specific activity of strain MP 50 for ketoprofen amide was about 0.12 mol min–1 and mg of dry weight and the substrate was converted for several hours at a constant rate.  相似文献   

11.
The gene, appA, encoding phytase was cloned from a size-selected genomic library of Citrobacter braakii YH-15 by Southern hybridization using a degenerate probe based on the N-terminal amino acid sequence of the phytase. The deduced amino acid sequence of appA contained the N-terminal RHGXRXP motif and the C-terminal HD motif, which are common in histidine acid phosphatases. It also had significant homology (60% identity) with phytase from Escherichia coli, while the physical mapping analysis of appA revealed that gene organization near appA in C. braakii was similar to that in Salmonella typhimurium genome. C. braakii AppA contained five putative N-glycosylation sites. The recombinant phytases, rAppAEc and rAppASc, were produced in E. coli and Saccharomyces cerevisiae, respectively, with both being fused with C-terminal His-tag. After purification, rAppASc was shown to be hyperglycosylated by Endo-H treatment. It had greater thermostability than the wild type phytase and rAppAEc.  相似文献   

12.
Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0–9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu2+ enhanced the activity of the purified enzyme but was inhibited by Zn2+ and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.  相似文献   

13.
Microbial flocculants for harvesting mass cultured Chlorella vulgaris were screened and that from Paenibacillussp. AM49 was identified as the best. The flocculation efficiency of this bioflocculant increased with the pH within a range of pH 5–11 and was 83%, which was higher than the 72% and 78% produced by aluminum sulfate and polyacrylamide, respectively. The highest flocculation efficiency was with 6.8 mm CaCl2 as co-flocculant. The bioflocculant from Paenibacillussp. AM49 can be used effectively to harvest C. vulgaris from large-scale cultures.  相似文献   

14.
The Candida sp. lipase prepared in our lab was used for the resolution of racemic ibuprofen. In order to study the effects of alcohol and solvent on the performance of Candida sp. lipase in enantioselective esterification of racemic ibuprofen, different alcohols were chosen as acyl acceptors in the same solvent, and identical substrates were used in different solvents. The reactions were performed under controlled water activity, thereby permitting the influences of the alcohols and the solvents to be separated from their ability to strip water from the solid enzyme. The results showed that alcohols and solvents had great effects on the performance of Candida sp. lipase.  相似文献   

15.
InEscherichia coli, several terminal reductases catalyze the reduction of S- and N-oxide compounds. We have used mutants missing either the constitutive dimethylsulfoxide (DMSO) reductase,dmsABC, and/or the inducible trimethylamine N-oxide (TMAO) reductase,torA, to define the roles of each reductase. These studies indicated that the constitutive DMSO reductase can sustain growth on DMSO, TMAO, methionine sulfoxide (MetSO), and other N-oxide compounds. Only one inducible TMAO reductase is expressed inE. coli, and this enzyme sustains growth on TMAO but not DMSO or MetSO. Characterization of atorA , dmsdouble mutant revealed that adenosine N-oxide (ANO) reductase is specifically required for anaerobic respiration on ANO in this mutant.  相似文献   

16.
Increased ability to recognize carbohydrate structures on particles was observed in promyelocytic HL 60 cells and histiocytic U 937 cells during differentiation inducedin vitro with dimethylsulfoxide (DMSO) or phorbol myristate acetate (PMA). The size of the cells and increased capacity to bind and ingest IgG-or complement-coated yeast particles were used as indicators of phagocytic maturation. Carbohydrate affinities were assessed by the binding of glycolipid-containing liposomes displaying mannose, galactose, lactose,N-acetylgalactosamine, fucose, inositol, or ganglioside residues. With DMSO, HL 60 cells showed greater affinity for mannose and ganglioside residues, and with PMA also for fucosyl ligands. U 937 cells displayed a slightly different pattern; mannose binding was present before induction and by DMSO affinity was clearly augmented for galactose, fucose, ganglioside and inositol residues. With PMA these effects were smaller except for increased binding of lactosyl liposomes.Subclones of cells derived from U 937 (Cl 1, Cl 2 and Cl 3) appeared more mature already in the absence of inducing agent, and the lectin activity was barely affected by DMSO or PMA. Incidentally, Cl 1 lacked mannose affinity, which was fully expressed in Cl 2. With respect to inositol and ganglioside residues the reverse pattern was observed.In conclusion, DMSO- or PMA-mediated maturation in HL 60 and U 937 cells is accompanied by increased carbohydrate binding similar to what has been found in mature macrophages and granulocytes, indicating that these cellular systems can be used for further assessment of the molecular origin of lectin-like membrane components in phagocytic cells.  相似文献   

17.
First enantioselective synthesis of S-(-)-1-[3-(4-tert-butylphenyl)-2-methyl]propyl-cis-3,5-dimethylmorpholine (6), biologically active enantiomer of the systematic fungicide fenpropimorph, is reported. It comprises reacting 4-tert-butylbenzylbromide with methyldiethylmalonate, decarbethoxylation of 2 into racemic 3-(4-tert-butylphenyl)-2-methylpropionic acid ethylester (3) in DMSO in the presence of alkali, then Pseudomonas sp. lipase catalyzed kinetic resolution of racemic 3 into S-(+)-acid (4), base-catalyzed racemization and recycling of the R-(-)-ester 3, acylation of cis-3,5-dimethylmorpholine, and final reduction of the intermediary amide 5 to provide enantiomerically pure S-(-)-6.  相似文献   

18.
The bacterial molybdoenzyme dimethyl sulfoxide (DMSO) reductase from Rhodobacter capsulatus catalyzes the reduction of DMSO to dimethyl sulfide in anaerobic respiration. In its native state, DMSO reductase is reduced to its active state by a pentaheme cytochrome (DorC). Alternatively, we show that DMSO reductase catalysis may be driven electrochemically using a series of homologous coordination compounds as mediating synthetic electron donors. All mediators are macrocyclic hexaaminecobalt(II) complexes in their active form, differing principally in their redox potentials over a range of about 250 mV. Thus, each complex presents a different reductive driving force to DMSO reductase and this leads to pronounced differences in the electrocatalytic behavior as measured by cyclic voltammetry. Digital simulation of the experimental voltammetry enables the critical features of the catalytic cycle to be extracted.  相似文献   

19.
In the screening of 11 E. coli strains overexpressing recombinant oxidoreductases from Bacillus sp. ECU0013, an NADPH-dependent aldo-keto reductase (YtbE) was identified with capability of producing chiral alcohols. The protein (YtbE) was overexpressed, purified to homogeneity, and characterized of biocatalytic properties. The purified enzyme exhibited the highest activity at 50°C and optimal pH at 6.5. YtbE served as a versatile reductase showing a broad substrate spectrum towards different aromatic ketones and keto esters. Furthermore, a variety of carbonyl substrates were asymmetrically reduced by the purified enzyme with an additionally coupled NADPH regeneration system. The reduction system exhibited excellent enantioselectivity (>99% ee) in the reduction of all the aromatic ketones and high to moderate enantioselectivity in the reduction of α- and β-keto esters. Among the ketones tested, ethyl 4,4,4-trifluoroacetoacetate was found to be reduced to ethyl (R)-4,4,4-trifluoro-3-hydroxy butanoate, an important pharmaceutical intermediate, in excellent optical purity. To the best of our knowledge, this is the first report of ytbE gene-encoding recombinant aldo-keto reductase from Bacillus sp. used as biocatalyst for stereoselective reduction of carbonyl compounds. This study provides a useful guidance for further application of this enzyme in the asymmetric synthesis of chiral alcohol enantiomers.  相似文献   

20.
Heterogeneous ω-transaminase sol–gel catalysts were prepared and characterized in terms of immobilization degree, loading capacity and catalytic behavior in the kinetic resolution of racemic 1-phenylethylamine (a model compound) with sodium pyruvate in phosphate buffer (pH 7.5). The catalyst obtained when ω-transaminase from Arthrobacter sp. was encapsulated from the aqueous solution of the enzyme, isopropyl alcohol and polyvinyl alcohol in the sol–gel matrices, consisting of the 1:5 mixture of tetramethoxysilane and methyltrialkoxysilane, proved to be optimal including the reuse and storage stabilities of the catalyst. The optimized immobilizate was shown to perform well in the kinetic resolution of four structurally different aromatic primary amines in aqueous DMSO (10, v/v-%). The enzyme preparation showed synthetic potential by enabling the catalyst reuse in five consecutive preparative scale kinetic resolutions using 100 mM 1-phenylethylamine in aqueous DMSO (10, v/v-%). It was typical to fresh catalyst preparations that the kinetic resolution tended to exceed 50% before the reaction stopped leaving the (S)-amine unreacted while thereafter in reuse the reactions stopped at 50% conversion as expectable to highly enantioselective reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号