首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of either tumor necrosis factor receptor 1 or Fas induces a low level of programmed cell death in LNCaP human prostate cancer cells. We have shown that LNCaP cells are entirely resistant to gamma-radiation-induced apoptosis, but can be sensitized to irradiation by TNF-alpha. Fas activation also sensitized LNCaP cells to irradiation, causing nearly 40% cell death 72 h after irradiation. Caspase-8 was cleaved and activated after exposure to tumor necrosis factor (TNF)-alpha. However, after exposure to anti-Fas antibody caspase-8 cleavage occurred only between the 26-kDa N-terminal prodomain and the 28-kDa C-terminal region that contains the protease components. Although anti-Fas antibody plus irradiation induced apoptosis that could be blocked by the pancaspase inhibitor zVAD, there was no measurable caspase-8 activity after exposure to anti-Fas antibody. The effector caspases-6 and -7, and to a lesser extent caspase-3, were activated by TNF-alpha, but not by anti-Fas antibody. Anti-Fas antibody, like TNF-alpha also activated serine proteases that contributed to cell death. Exposure of LNCaP cells simultaneously to TNF-alpha and anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis that occurred very rapidly and was still further augmented by irradiation. Rapid apoptosis that ensued from combined treatment with TNF-alpha, anti-Fas antibody, and irradiation was completely blocked either by zVAD or expression of dominant negative Fas-associated death domain. Our data shows that there are qualitative differences in caspase activation resulting from either TNF receptor 1 or Fas. Simultaneous activation of these receptors was synergistic and caused rapid epithelial cell apoptosis mediated by the caspase cascade.  相似文献   

2.
HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells   总被引:7,自引:0,他引:7  
The integrity of the blood-brain barrier (BBB) is critical for normal brain function. Neuropathological abnormalities in AIDS patients have been associated with perivascular HIV-infected macrophages, gliosis, and abnormalities in the permeability of the BBB. The processes by which HIV causes these pathological conditions are not well understood. To characterize the mechanism by which HIV-1 Tat protein modulates human brain microvascular endothelial cell (HBMEC) functions, we studied the effects of HIV-1 Tat in modulating HBMEC apoptosis and permeability. Treatment of HBMEC with HIV-1 Tat led to Flk-1/KDR and Flt-4 receptor activation and the release of NO. The protein levels of endothelial NO synthase (NOS) and inducible NOS were increased by HIV-1 Tat stimulation. Importantly, HIV-1 Tat caused apoptosis of HBMEC, as evidenced by changes in the cleavage of poly(A)DP-ribose polymerase, DNA laddering, and incorporation of fluorescein into the nicked chromosomal DNA (TUNEL assay). HIV-1 Tat-mediated apoptosis in HBMEC was significantly inhibited in the presence of N-nitro-L-arginine methyl ester (an inhibitor of NOS) and wortmannin (a phosphoinositol 3-kinase inhibitor). Furthermore, HIV-1 Tat treatment significantly increased HBMEC permeability, and pretreatment with both N-nitro-L-arginine methyl ester and wortmannin inhibited the Tat-induced permeability. Taken together, these results indicate that dysregulated production of NO by HIV-1 Tat plays a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB.  相似文献   

3.
Thrombospondin-1 (TSP-1) treatment of dermal microvascular endothelial cells (MvEC) has been shown to upregulate Fas ligand (FasL) and to induce apoptosis by a mechanism that requires caspase-8 activity. We have examined the potential anti-angiogenic effects of TSP-1 on primary human brain MvEC. The addition of TSP-1 to primary human brain MvEC cultured as monolayers on type 1 collagen, induced cell death and apoptosis (evidenced by caspase-3 cleavage) in a dose- (5-30 nM) and time-dependent (maximal at 17 h) manner. TSP-1 treatment for 17 h induced caspase-3 cleavage that required caspase-8 activity and the tumor necrosis factor receptor 1 (TNF-R1). We did not find a requirement for Fas, or the tumor necrosis-related apoptosis-inducing ligand receptors (TRAIL-R) 1 and 2. We confirmed the findings using caspase inhibitors, blocking antibodies and small interfering RNA (siRNA). Further analysis indicated that the TSP-1 induction of caspase-3 cleavage of primary human brain MvEC adherent to collagen required the synthesis of new message and protein, and that TSP-1 induced the expression of TNFalpha mRNA and protein. Consistent with these findings, when the primary human brain MvEC were propagated on collagen gels mAb anti-TNF-R1 reversed the inhibitory effect, in part, of TSP-1 on tube formation and branching. These data identify a novel mechanism whereby TSP-1 can inhibit angiogenesis-through induction of apoptosis in a process mediated by TNF-R1.  相似文献   

4.
The induction of apoptosis in T cells by bystander cells has been repeatedly implicated as a mechanism contributing to the T cell depletion seen in HIV infection. It has been shown that apoptosis could be induced in T cells from asymptomatic HIV-infected individuals in a Fas-independent, TNF-related apoptosis-inducing ligand (TRAIL)-dependent manner if the cells were pretreated with anti-CD3. It has also been shown that T cells from HIV-infected patients were even more sensitive to TRAIL induction of apoptosis than they were to Fas induction. Recently, it has been reported that in an HIV-1 SCID-Hu model, the vast majority of the T cell apoptosis is not associated with p24 and is therefore produced by bystander effects. Furthermore, few apoptotic cells were associated with neighboring cells which were positive for either Fas ligand or TNF. However, most of the apoptotic cells were associated with TRAIL-positive cells. The nature of these TRAIL-positive cells was undetermined. Here, we report that HIV infection of primary human macrophages switches on abundant TRAIL production both at the RNA and protein levels. Furthermore, more macrophages produce TRAIL than are infected by HIV, indicating that a bystander mechanism may, at least in part, upregulate TRAIL. Exogenously supplied HIV-1 Tat protein upregulates TRAIL production by primary human macrophages to an extent indistinguishable from infection. The results suggest a model in which HIV-1-infected cells produce extracellular Tat protein, which in turn upregulates TRAIL in macrophages which then can induce apoptosis in bystander T cells.  相似文献   

5.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

6.
Pulmonary hypertension associated with human immunodeficiency virus (HIV) infection also involves injury to the lung endothelium. However, the pathogenesis of HIV-induced pulmonary hypertension is not known; we hypothesized that HIV or secreted viral proteins could play a role in vascular injury and the increased frequency of pulmonary hypertension observed in HIV-infected patients. Here, we report that exposure of HIV-1 gp120 proteins to primary human lung microvascular endothelial cells causes apoptosis, as assessed by TUNEL assay, Annexin-V staining, and DNA laddering. Using ribonuclease protection assay and Western blotting we find that gp120-induced apoptosis of lung endothelial cells involves a down-regulation in Bcl-xl mRNA and proteins. In addition, gp120 significantly increases secretion of the potent vasoconstrictor endothelin-1 by human lung endothelial cells. These data suggest that secreted HIV gp120 proteins induce lung endothelial cell injury and could contribute to the development of HIV-associated pulmonary hypertension.  相似文献   

7.
Kuo PL 《Life sciences》2005,77(23):2964-2976
The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients with inflamed synovium, such as in rheumatoid arthritis (RA). By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, I have shown that myricetin exhibits a significant induction of differentiation in the human osteoblast-like cell line MG-63. In addition, I also assessed whether myricetin affects inflammatory cytokines-mediated apoptosis in osteoblast cells. TNF-alpha or IL-1beta enhances apoptotic DNA fragmentation in anti-Fas IgM-treated MG-63 cells by increasing Fas receptor expression. However, TNF-alpha or IL-1beta treatment alone does not induce apoptosis. Treatment of MG-63 cells with myricetin not only inhibited anti-Fas IgM-induced apoptosis, but also blocked the synergetic effect of anti-Fas IgM with TNF-alpha or IL-1beta on cell death. The apoptotic inhibition of myricetin is associated with inhibition of TNF-alpha and IL-1beta-mediated Fas expression and enhancement of FLIP expression, resulting in a decrease of caspase-8 and caspase-3 activation. These results indicate a potential use of myricetin in preventing osteoporosis by inhibiting inflammatory cytokines-mediated apoptosis in osteoblast cells.  相似文献   

8.
A20 was originally characterized as a TNF-inducible gene in human umbilical vein endothelial cells. As an NF-kappaB target gene, A20 is also induced in many other cell types by a wide range of stimuli. Expression of A20 has been shown to protect from TNF-induced apoptosis and also functions via a negative-feedback loop to block NF-kappaB activation induced by TNF and other stimuli. To date, there are no reports on whether A20 can protect OxLDL-induced apoptosis in macrophages. For the first time we report that A20 expression blocks OxLDL-mediated cell toxicity and apoptosis. OxLDL induced the expression of Fas and FasL, and the subsequent caspase-8 cleavage and treatment with a neutralizing ZB4 anti-Fas antibody blocked apoptosis induced by OxLDL. Expression of dominant negative FADD efficiently prevented OxLDL-induced apoptosis and caspase-8 activation. A20 expression significantly attenuated the increased expression of Fas and FasL, and Fas-mediated apoptosis. These findings suggest that A20-mediated protection from OxLDL may occur at the level of Fas/FADD-caspase-8 and be FasL dependent. Treatment of RAW264.7 cells with OxLDL induces a series of time-dependent events, including the release of cytochrome c, Smac and Omi from the mitochondria to the cytosol, activation of caspase-9, -6, -2, and -3, which are blocked by A20 expression. No cleaved form of Bid was detected, even treatment with OxLDL for 48 h. Expression of dominant negative FADD also efficiently prevented OxLDL-induced the above apoptotic events. The release of cyto c, Smac and Omi from mitochondria to cytosol, activated by OxLDL treatment, and the activation of caspase-9 may not be a downstream event of caspase-8-mediated Bid cleavage. Therefore, the protective effect of A20 on mitochondrial apoptotic pathway activated by OxLDL may be dependent on FADD. A20 expression reversed OxLDL-mediated G(0)/G(1) stage arrest by maintaining the expression of cyclin B1, cyclin D1, and cyclin E, and p21 and p73. Thus, A20 expression blocks OxLDL-mediated apoptosis in murine RAW264.7 macrophages through disrupting Fas/FasL-dependent activation of caspase-8 and the mitochondria pathway.  相似文献   

9.
Tumor necrosis factor (TNF) and cytotoxic T lymphocytes, which utilize Fas to induce apoptosis in target cells, are known to play a critical role in the host defense against viral infection. In this study, the Epstein-Barr virus BHRF1 protein was stably expressed in intestine 407 cells which were susceptible to cell death mediated through both the TNF receptor and Fas. WST-1 conversion assays and acridine orange staining showed that vector-transfected control cells were killed by TNF-alpha or anti-Fas antibody in a dose-dependent manner, whereas BHRF1-expressing cells were resistant to apoptosis induced by these mediators. DNA fragmentation, a characteristic of apoptosis induced by TNF-alpha and the anti-Fas antibody, was suppressed in BHRF1-expressing cells. These results indicate that the BHRF1 protein protects cells from apoptosis mediated by the TNF receptor and Fas. The role of BHRF1 as an inhibitor of cytokine-induced apoptosis during the Epstein-Barr virus lytic cycle in vivo is discussed.  相似文献   

10.
To date, two major apoptotic pathways, the death receptor and the mitochondrial pathway, have been well documented in mammalian cells. However, the involvement of these two apoptotic pathways, particularly the death receptor pathway, in transforming growth factor-beta 1 (TGF-beta 1)-induced apoptosis is not well understood. Herein, we report that apoptosis of human gastric SNU-620 carcinoma cells induced by TGF-beta 1 is caused by the Fas death pathway in a Fas ligand-independent manner, and that the Fas death pathway activated by TGF-beta 1 is linked to the mitochondrial apoptotic pathway via Bid mediation. We showed that TGF-beta 1 induced the expression and activation of Fas and the subsequent caspase-8-mediated Bid cleavage. Interestingly, expression of dominant negative FADD and treatment with caspase-8 inhibitor efficiently prevented TGF-beta 1-induced apoptosis, whereas the treatment with an activating CH11 or a neutralizing ZB4 anti-Fas antibody, recombinant Fas ligand, or Fas-Fc chimera did not affect activation of Fas and the subsequent induction of apoptosis by TGF-beta 1. We further demonstrated that TGF-beta 1 also activates the mitochondrial pathway showing Bid-mediated loss of mitochondrial membrane potential and subsequent cytochrome c release associated with the activations of caspase-9 and the effector caspases. Moreover, all these apoptotic events induced by TGF-beta 1 were found to be effectively inhibited by Smad3 knockdown and also completely abrogated by Smad7 expression, suggesting the involvement of the Smad3 pathway upstream of the Fas death pathway by TGF-beta 1.  相似文献   

11.
HIV-1-associated ocular complications, such as microvasculopathies, can lead to the loss of vision in HIV-1-infected patients. Even in patients under highly active antiretroviral therapy, ocular lesions are unavoidable. Ocular complications have been demonstrated to be closely related to the breakdown of the blood-retinal-barrier (BRB); however, the underlying mechanism is not clear. The data from this study indicated that the HIV-1 Tat protein induced the apoptosis of human retinal microvascular endothelial cells (HRMECs) and retinal pigmen epithelium (RPE) cells, which compose the inner BRB and the outer BRB, respectively. In addition, this study found that the activation of N-methyl-D-aspartate receptors (NMDARs) was involved in the apoptosis of RPE cells, but it caused no changes in HRMECs. Furthermore, both cell types exhibited enhanced expression of Bak, Bax and Cytochrome c. The inhibition of Tat activity protected against the apoptosis induced by NMDAR activation and prevented the dysregulation of Bak, Bax and Cytochrome c, revealing an important role for the mitochondrial pathway in HIV-1 Tat-induced apoptosis. Together, these findings suggest a possible mechanism and may identify a potential therapeutic strategy for HIV-1-associated ocular complications.  相似文献   

12.
Two ovarian cancer cell lines named NOS4 and SKOV-3 have been shown to have different sensitivities to a cytotoxic anti-Fas antibody, CH-11. Although both cell lines express Fas molecules on the cell surfaces at the same intensities, apoptosis is induced by CH-11 in NOS4 cells but not in SKOV-3 cells. In this study, the different apoptosis-sensitivities of these cells were assessed. Both cell lines express almost the same levels of FADD, RIP, c-FLIP, FAP-1, Bax, Bcl-2 and Bcl-XL. Evidence of caspase-8, caspase-9 and caspase-3 activation and of cleavage of PARP and Bid was obtained in NOS4 cells but not in SKOV-3 cells. When triggered by FasL protein, DNA fragmentation and caspase-8 activation were observed in SKOV-3 cells, though they were not as clear as in NOS4 cells. All the anti-Fas antibody-mediated signals for apoptosis induction in NOS4 cells were completely blocked by a caspase-8-specific inhibitor, Z-IETD-FMK. These results indicate that the different sensitivities to the anti-Fas antibody are solely dependent on the activation of caspase-8, which could be influenced by yet unknown qualitative or quantitative abnormalities in molecules involved in DISC formation.  相似文献   

13.
TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells   总被引:10,自引:0,他引:10  
Transforming growth factor-beta 1 (TGF-beta 1) has important roles in lung fibrosis and the potential to induce apoptosis in several types of cells. We previously demonstrated that apoptosis of lung epithelial cells induced by Fas ligation may be involved in the development of pulmonary fibrosis. In this study, we show that TGF-beta1 induces apoptosis of primary cultured bronchiolar epithelial cells via caspase-3 activation and down-regulation of cyclin-dependent kinase inhibitor p21. Concentrations of TGF-beta 1 that were not sufficient to induce apoptosis alone could enhance agonistic anti-Fas Ab or rFas ligand-mediated apoptosis of cultured bronchiolar epithelial cells. Soluble Fas ligand in the bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF) also induced apoptosis of cultured bronchiolar epithelial cells that was significantly attenuated by anti-TGF-beta Ab. Otherwise, BALF from patients with hypersensitivity pneumonitis (HP) could not induce apoptosis on bronchiolar epithelial cells, despite its comparable amounts of soluble Fas ligand. The concentrations of TGF-beta 1 in BALF from patients with IPF were significantly higher compared with those in BALF from patients with HP or controls. Furthermore, coincubation with the low concentration of TGF-beta 1 and HP BALF created proapoptotic effects comparable with the IPF BALF. In vivo, the administration of TGF-beta 1 could enhance Fas-mediated epithelial cell apoptosis and lung injury via caspase-3 activation in mice. Our results demonstrate a novel role of TGF-beta 1 in the pathophysiology of pulmonary fibrosis as an enhancer of Fas-mediated apoptosis of lung epithelial cells.  相似文献   

14.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

15.
The blood-brain barrier (BBB) is a network formed mainly by brain microvascular endothelial cells (BMECs). The integrity of the BBB is critical for brain function. Breakdown of the BBB is commonly seen in AIDS patients with HIV-1-associated dementia despite the lack of productive HIV infection of the brain endothelium. The processes by which HIV causes these pathological conditions are not well understood. In this study we characterized the molecular mechanisms by which Tat mediates its pathogenic effects in vitro on primary human BMECs (HBMECs). Tat treatment of HBMECs stimulated cytoskeletal organization and increased focal adhesion sites compared with control cells or cells treated with heat-inactivated Tat. Pretreatment with Tat Abs or with the specific inhibitor SU-1498, which interferes with vascular endothelial growth factor receptor type 2 (Flk-1/KDR) phosphorylation, blocked the ability of Tat to stimulate focal adhesion assembly and the migration of HBMECs. Focal adhesion kinase (FAK) was tyrosine-phosphorylated by Tat and was found to be an important component of focal adhesion sites. Inhibition of FAK by the dominant interfering mutant form, FAK-related nonkinase, significantly blocked HBMEC migration and disrupted focal adhesions upon Tat activation. Furthermore, HIV-Tat induced permeability changes in HBMECs in a time-dependent manner. Tat also impaired BBB permeability, as observed in HIV-1 Tat transgenic mice. These studies define a mechanism for HIV-1 Tat in focal adhesion complex assembly in HBMECs via activation of FAK, leading to cytoskeletal reorganization and permeability changes.  相似文献   

16.
We have here investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a new member of the TNF cytokine superfamily, on the survival of Jurkat lymphoblastoid cell lines stably transfected with plasmids expressing the wild-type or mutated (Cys22) human immunodeficiency virus type 1 (HIV-1) tat gene. Jurkat cells transfected with wild-type tat were resistant to TRAIL-mediated apoptosis, while Jurkat cells mock-transfected with the control plasmid or with a mutated nonfunctional tat cDNA were highly susceptible to TRAIL-mediated apoptosis. Also, pretreatment with low concentrations (10-100 ng/ml) of extracellular synthetic Tat protein partially protected Jurkat cells from TRAIL-mediated apoptosis. Taken together, these results demonstrated that endogenously expressed tat and, to a lesser extent, extracellular Tat block TRAIL-mediated apoptosis. Since it has been shown that primary lymphoid T cells purified from HIV-1-infected individuals are more susceptible than those purified from normal individuals to TRAIL-mediated apoptosis, our findings underscore a potentially important role of Tat in protecting HIV-1-infected cells from TRAIL-mediated apoptosis.  相似文献   

17.
CD4+ T-cell depletion in AIDS patients involves induction of apoptosis in human immunodeficiency virus (HIV)-infected and noninfected T cells. The HIV type 1 (HIV-1)-transactivating protein Tat enhances apoptosis and activation-induced cell death (AICD) of human T cells. This effect is mediated by the CD95 (APO-1/Fas) receptor-CD95 ligand (CD95L) system and may be linked to the induction of oxidative stress by Tat. Here we show that HIV-1 Tat-induced oxidative stress is necessary for sensitized AICD in T cells caused by CD95L expression. Tat-enhanced apoptosis and CD95L expression in T cells are inhibited by neutralizing anti-Tat antibodies, antioxidants, and the Tat inhibitor Ro24-7429. Chimpanzees infected with HIV-1 show viral replication resembling early infection in humans but do not show T-cell depletion or progression towards AIDS. The cause for this discrepancy is unknown. Here we show that unlike Tat-treated T cells in humans, Tat-treated chimpanzee T cells do not show downregulation of manganese superoxide dismutase or signs of oxidative stress. Chimpanzee T cells are also resistant to Tat-enhanced apoptosis, AICD, and CD95L upregulation.  相似文献   

18.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

19.
20.
These studies explore the molecular effect of arsenicals on MM cells. Freshly isolated cells derived from patients with advanced, chemo-refractory myeloma as well as human myeloma cell lines, ARP-1, RPMI-8226 and H929 were exposed to the organic arsenical melarsoprol and to the inorganic compound AT. Both agents potently induced apoptosis in myeloma cells. Exposure to 1-5 microM AT or melarsoprol for 6 hours suppressed NF-kappa B DNA binding and enhanced of c-Jun kinase (JNK) activity. Arsenic also activated caspase-3 resulting in the cleavage of poly (ADP-ribose) polymerase (PARP) and Fas/TNF alpha related receptor interacting protein (RIP). In contrast to reported observations in acute promyelocytic leukemia, myeloma cell apoptosis was not associated with either the downregulation of Bcl-2 protein or with alterations in the expression of other Bcl-2 family members, Bax, Bak, Bag, and Bcl-xl. This study first shows that arsenic induces apoptotic signaling in MM through the cleavage of TNF alpha related receptor interacting protein (RIP). RIP is a key downstream protein in FasL/ TNF alpha /TRAIL induced apoptosis and a major antiapoptotic adaptor of pathways through NF-kappa B and JNK. RIP has not been previously characterized in myeloma. This study supports the hypothesis that arsenicals share common mediators (RIP, NF-kappa B, PARP, caspase-3) with death receptor induced apoptosis. These studies provide an important insight into the molecular mechanism of AT induced apoptosis and can be used in the development of adjuvant therapy for MM, presently an incurable disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号