首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf senescence of a chlorophylldeficient rice mutant (LT-8) was investigated. At 10 days after planting, the chlorophyll level in the third leaves of rice seedlings of the mutant was about one half that of normal leaves (Norin no. 8), whereas no difference in the protein level could be detected in the two genotypes. The protein level in leaves decreased with increasing age, and no significant difference could be detected during senescence in the two genotypes. Chlorophyll level in the normal leaves also decreased with increasing age. However, the chlorophyll level in the mutant leaves began to decrease only after more than 60% of the initial protein had been degraded. The pattern of ethylene production in the normal leaves was, in general, similar to that in the mutant leaves. Ethylene production first decreased with age, increased to a maximum at day 18, and decreased thereafter. Both spermidine and spermine levels in the leaves of the two genotypes decreased with increasing age. The pattern of the putrescine level in the normal leaves behaved somewhat similar to that in the mutant leaves. However, during the course of senescence, the putrescine level in the mutant leaves was always higher than that in the normal leaves. The possible relationship between endogenous polyamine levels and ethylene production is discussed.  相似文献   

2.
Role of ethylene in the senescence of detached rice leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Kao CH  Yang SF 《Plant physiology》1983,73(4):881-885
The role of ethylene in the senescence of detached rice leaves in relation to their changes in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production was studied. In freshly excised rice leaf segments, ACC level and ethylene production rates were very low. Following incubation, the rates of ethylene production increased and reached a maximum in 12 h, and subsequently declined. The rise of ethylene production was associated with a 20- to 30-fold increase in ACC level.

Ethylene seems to be involved in the regulation of the senescence of detached rice leaves. This conclusion was based on the observations that (a) maximum ethylene production preceded chlorophyll degradation, (b) ACC application promoted chlorophyll degradation, (c) inhibitors of ethylene production and ethylene action retarded chlorophyll degradation, and (d) various treatments such as light, cycloheximide, α,α-dipyridyl, Ni2+, and cold temperature, which retarded chlorophyll degradation, also inhibited ethylene production.

Abscisic acid promoted senescence but significantly decreased ethylene production, whereas benzyladenine retarded senescence but promoted ethylene production. This is interpreted to indicate that abscisic acid treatment increased the tissue sensitivity to ethylene, whereas benzyladenine treatment decreased it.

  相似文献   

3.
Polyethylene glycol (PEG)-treatment decreased chlorophyll and protein contents and increased NH4 + content due to decreased glutamine synthetase activity in detached rice leaves. PEG-treatment also increased abscisic acid (ABA) content and decreased ethylene production. Addition of fluridone, an inhibitor of ABA biosynthesis, reduced ABA content in rice leaves but did not prevent chlorophyll and protein loss in rice leaves induced by PEG. Silver thiosulfate, an inhibitor of ethylene action, was effective in preventing PEG-promoted chlorophyll and protein loss, but had no effect on PEG-induced NH4 + accumulation. The current results suggest that NH4 + accumulation in rice leaves induced by PEG increases leaf sensitivity to ethylene, which in turn results in an enhancement of chlorophyll and protein loss. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A non-yellowing mutant of Phaseolus vulgaris L. was used toinvestigate factors involved in chlorophyll breakdown duringfoliar senescence. The mutant showed physiological changes similarto those of the normal yellowing type during senescence exceptthat leaf chlorophyll did not decline. Transmission electronmicroscope studies did not reveal appreciable differences inchloroplast ultrastructure between the two genotypes, suggestingthat chloroplast membrane integrity was not the factor preventingchlorophyll degradation in the mutant. However, the lack ofplastoglobuli in senescent mutant chloroplasts suggested thatthe lipid environment may be different from that of senescentnormal chloroplasts. Banding patterns of total soluble protein,resolved by sodium dodecyl sulphate-poly aery lamide gel electrophoresisshowed few, if any, differences between mature non-senescentnormal and mutant leaves; however, bands at 14 kD and 58 kDdiminished in senescent normal leaves, but remained in senescentmutant non-yellowing leaves. Key words: Non-yellowing mutant, Phaseolus vulgaris, senescence, chlorophyll degradation  相似文献   

5.
We studied the influence of lysophosphatidylethanolamine (LPE) on the pattern and rate of ethylene production and respiration of tomato ( Lycopersicon esculentum cv. H7155) leaflets and fruit. Leaflets that had been senescing on the plant showed a climacteric-like rise in ethylene production but not in respiration rate which decreased continuously with leaf age. Detached leaflets had a climacteric-like pattern in respiration whether they were incubated in complete darkness or in light. Detached leaflets incubated in the dark had higher rates of ethylene production and CO2 evolution than did light-incubated leaves. There was no change in the pattern of ethylene production or CO2 evolution as a result of LPE treatment. However, LPE-treated attached and detached leaflets had consistently lower rates of CO2 evolution. The reduction in CO2 evolution by LPE was most pronounced at the climacteric-like peak of the detached leaves. LPE-treated leaflets had a higher chlorophyll content and fresh weight and lower electrolyte leakage than the control. LPE-treated fruits had lower rates of ethylene and CO2 production than did the control. LPE-treated fruits also had higher pericarp firmness and lower electrolyte leakage than the control. The results of the present study provide evidence that LPE is able to retard senescence of attached leaves and detached leaves and tomato fruits. Several recent studies suggest that lysolipids can act in a specific manner as metabolic regulators. Our results suggest a specific role of lysolipid LPE in aging and senescence  相似文献   

6.
Patterns of ehtylene production in senescing leaves   总被引:15,自引:14,他引:1       下载免费PDF全文
Changes in the patterns of ethylene production, chlorophyll content, and respiration were studied in relation to the senescence of intact leaves and leaf discs. The primary leaves of pinto bean, which abscise readily during natural senescence, and tobacco and sugar beet leaves, which do not abscise, were used. A decrease in the rate of ethylene production and respiration, during the slow phase of chlorophyll degradation, was observed in leaf-blade discs cut from mature leaves and aged in the dark. During rapid chlorophyll loss both ethylene production and respiration increased and then decreased. These climacteric-like patterns were shown by leaf discs of all three species. Discs taken from leaves that had been senescing on the plant also showed a climacteric-like rise in ethylene production but not in respiration, which decreased continuously with leaf age. Climacteric-like patterns in the rise of ethylene and respiration for leaf discs were also shown by the petioles of both bean and tobacco leaves. This indicates that the rise of ethylene and respiration is characteristic of the general process of senescence in leaves and is not restricted to the abscission process. In contrast to the ethylene-forming systems in climacteric fruits and many flowers, the one in leaves declines sharply in the early stages of senescence. The subsequent rise of ethylene production appears to be associated with the rapid phase of chlorophyll breakdown, and may indicate the final stage of the senescence process during which ethylene could be actively involved in inducing leaf abscission.  相似文献   

7.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

8.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

9.
The possibility that NH4 + accumulation is linkedto the senescence of detached rice (Oryza sativa) leavesinduced by NaCl was investigated. NaCl was effective in promoting senescenceandin increasing NH4 + content of detached rice leaves.NaCl-promoted senescence is mainly due to the effect of both Na+ andCl- ions. NaCl had no or slight effect on relative water content,suggesting that an osmotic effect is unlikely to be a major factor contributingto senescence of these leaves. NaCl-induced NH4 +accumulation was due to enhanced nitrate reduction and decreased glutaminesynthetase activity. Exogenous NH4Cl, which caused an accumulationofNH4 + in detached rice leaves, also promoted senescence.Itwas found that an increase in NH4 + content preceded theoccurrence of senescence caused by NaCl. Results also show that NaCl-promotedsenescence is unlikely to be due to the lack of glutamate, glutamine,aspartate,and asparagine. The current results suggest that NH4 +accumulation is linked to NaCl-induced rice leaf senescence. Since ethylene isknown to be a potent promoter of leaf senescence, we also investigated the roleof ethylene in the regulation of NH4 +-promoted senescenceof detached rice leaves. NaCl or NH4Cl treatment resulted in adecrease of ethylene production. Evidence was presented to show thatNH4 + accumulation in detached rice leaves does not changetissue sensitivity to ethylene. Clearly, the possible involvement of ethyleneinNH4 +-promoted senescence is excluded.  相似文献   

10.
Molecular cloning and function analysis of the stay green gene in rice   总被引:6,自引:1,他引:5  
Chloroplasts undergo drastic morphological and physiological changes during senescence with a visible symptom of chlorophyll (Chl) degradation. A stay green mutant was identified and then isolated from the japonica rice (Oryza sativa) cv. Huazhiwu by gamma-ray irradiation. The stay green mutant was characterized by Chl retention, stable Chl-protein complexes, and stable thylakoid membrane structures, but lost its photosynthetic competence during senescence. The gene, designated Stay Green Rice (SGR), was cloned by a positional cloning strategy encoding an ancient protein containing a putative chloroplast transit peptide. SGR protein was found in both soluble and thylakoid membranes in rice. SGR, like the gene for pheophorbide a oxygenase (PaO), was constitutively expressed, but was upregulated by dark-induced senescence in rice leaves. Senescence-induced expression of SGR and PaO was enhanced by ABA, but inhibited by cytokinin. Overexpression of SGR reduced the number of lamellae in the grana thylakoids and reduced the Chl content of normally growing leaves. This indicates that upregulation of SGR increases Chl breakdown during senescence in rice. A small quantity of chlorophyllide a accumulated in sgr leaves, but this also accumulated in wild-type rice leaves during senescence. Some pheophorbide a was detected in sgr leaves in the dark. According to these observations, we propose that SGR may be involved in regulating or taking part in the activity of PaO, and then may influence Chl breakdown and degradation of pigment-protein complex.  相似文献   

11.
The role of ethylene in jasmonate-promoted senescence of detached rice leaves was investigated. Ethylene production in methyl jasmonate-treated leaf segments of rice was lower than in the control leaves. Treatment of leaf segments with silver nitrate or/and silver thiosulfate, inhibitors of ethylene action, inhibited methyl jasmonate-, jasmonic acid-, linolenic acid-, and abscisic acid-promoted senescence of detached leaves. We suggest that an increase in ethylene sensitivity, but not ethylene level, is the initial event triggering the enhanced senescence by jasmonates of detached rice leaves.Abbreviations JA jasmonic acid - MJ methyl jasmonate - STS silver thiosulfate - ABA abscisic acid  相似文献   

12.
A spontaneous mutant, Abs, that does not abscise any organs despite an apparently normal pattern of growth and senescence was isolated from among plants of Lupinus angustifolius cv. 'Danja'. Abs was found to be a recessive single gene mutation, and it was proposed that the gene for the original mutant phenotype, referred to as Abs, be designated abs1. An artificially induced mutant allelic to abs1 was also obtained and a non-allelic mutant phenotype, Delabs (delayed abscission), which was designated abs2. Morphological and cytological features of the abscission process under conditions of natural and ethylene-induced senescence were compared in the wild-type parent and Abs mutant. In the parent genotype abscission under natural conditions is similar to many other species, consisting of a stage of cell division forming an abscission zone, activation of the cytoplasm of zone cells, dissolution of the middle lamella, disorganization of fibrillar wall structure, and cell separation. A slightly different pattern of abscission zone development was observed for ethylene-treated explants of the parent, mainly with respect to features of cell division and cell enlargement. In Abs no abscission occurred for any abscission sites under conditions of natural senescence or with ethylene treatment of small shoot explants. However, relatively normal abscission zones were differentiated at all sites in the mutant except that extensive cell wall disorganization did not occur. Ethylene production by leaves or other organs of the mutant was no different from that of Danja. Application of copper salts or hydrogen peroxide, droughting, waterlogging, or application of abscisic acid (ABA) increased ethylene production equally in both genotypes but did not result in abscission in the mutant. Release of root cap border cells, the only other cell separation process examined, was similar in each genotype. The study concludes that the mutation is quite specific to the abscission process and may be due to a lack of or delay in the expression of hydrolytic enzyme(s) associated specifically with abscission zone differentiation and separation.  相似文献   

13.
The loss of pigments was assessed in detached leaves of Festuca pratensis Huds. kept in permanent darkness. Two genotypes, a normal yellowing cultivar Rossa and a non-yellowing mutant Bf 993 were compared with each other. Analysis of individual pigments, chlorophylls. β-carotene, lutein, violaxanthin and neoxanthin was performed using HPLC. In the non-yellowing genotype the high retention of chlorophylls was associated with an equally high retention of total carotenoids. Although the two genotypes differ markedly with regard to the rate of pigment loss, the ratios of yellow to green pigments did not change significantly during dark-induced senescence. At the end of the senescence period β-carotene was retained to a higher degree than the xanthophylls, particularly in the yellowing genotype. In the mutant leaves the ratio of chlorophyll a to b remained nearly constant, whereas in leaves of the normal genotype a preferential retention of chlorophyll b was observed towards the end of the senescence period. It is concluded that the thylakoids of the non-yellowing genotype retain all the principal components of protein-pigment complexes, i.e. chlorophylls, carotenoids and apoproteins. Possible explanations for the stability of these complexes in the mutant are discussed.  相似文献   

14.
The chlorophyll and protein contents of the flag, second and third leaves gradually decreased during the reproductive development of rice (Oryza sativa L. cv. Rasi) and wheat (Triticum aestivum L. cv. Sonalika) plants, whereas proline accumulation increased up to the grain maturation stage and slightly decreased thereafter. In rice plant, the rate of decrease in chlorophyll and protein and increase in proline level were higher in the flag leaf than in the second leaf. It was opposite in wheat plant. The export of [32P]-phosphate from leaves to grains gradually increased reaching a maximal stage at the grain development stage, and then declined. The export of this radioisotope was greater in rice than in wheat. Removal of panicle at the anthesis and grainfilling stages delayed leaf senescence of rice plant, while in wheat the ponicle removal at any stage did not have a marked effect on delaying leaf senescence. The contents of chlorophyll and protein of glumes were higher in wheat than in rice. The variation of such source-sink relationship might be one of the possible reasons for the above effect on leaf senescence.  相似文献   

15.
An early senescence (es) mutant of rice Oryza sativa L. with progressing death of most of leaves before heading stage was identified in the field in Hainan province. After tillering stage, the brown striations were found in the base of green leaves randomly, and then expanded to whole leaves. No fungi, bacteria, and viruses were detected in the brown striations suggesting that it was a genetic mutant. The ultrastructure of leaf cells at the site of brown striations showed breakdown of chloroplast thylakoid membrane structures and other organelles, and condensation of the cytoplasm at severe senescence stage. The photosynthetic activity and chlorophyll (Chl) contents decreased irreversibly along with leaf senescence process.  相似文献   

16.
外源施加AsA和MeJA对乙烯利诱导水稻叶片衰老的影响   总被引:1,自引:0,他引:1  
以野生型水稻(Oryza sativa)株系中花11(ZH-11)及其抗坏血酸合成关键酶基因GLDH下调株系(GI-2)为材料,研究了外源抗坏血酸(AsA)与茉莉酸甲酯(MeJA)对乙烯利诱导下水稻叶片早衰现象的影响。结果表明,外源AsA提高了水稻GI-2中的抗坏血酸含量、Rubisco含量及叶绿素的含量,减缓了其光合特性参数的下降速率,但对水稻ZH-11没有显著影响。外源MeJA降低了两株系的抗坏血酸、Rubisco及叶绿素含量,加快了叶内光合特性参数的下降速率,且对ZH-11的影响大于GI-2。因此,外源AsA处理能有效缓解乙烯利诱导的水稻叶片早衰现象,使叶片的衰老进程得以延缓,而外源MeJA作用相反。  相似文献   

17.
To determine the role of ethylene during tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) leaf senescence, transgenic ACC oxidase antisense plants were analysed. Northern analysis of wild-type plants indicated that ACC oxidase mRNA accumulation normally begins in pre-senescent green leaves but was severely reduced in the antisense plants. Although the levels of ethylene evolved by wild-type and transgenic leaves increased during the progression of senescence, levels were extremely low in transgenic leaves. Leaf senescence, as assessed by colour change from green to yellow, was clearly delayed by 10–14 days in the antisense plants when compared with wild-type plants. Northern analysis of the photosynthesis-associated genes, cab and rbcS, indicated that levels of the corresponding mRNAs were higher in transgenic leaves which were not yet senescing compared with senescing wild-type leaves of exactly the same age. Northern analysis using probes for tomato fruit ripening-related genes expressed during leaf senescence indicated that once senescence was initiated the expression pattern of these mRNAs was similar in transgenic and wild-type leaves. In the antisense plants chlorophyll levels, photosynthetic capacity and chlorophyll fluorescence were higher when compared with senescing wild-type plants of the same age. Photosynthetic capacity and the quantum efficiency of photosystem II were maintained for longer in the transformed plants at values close to those observed in wild-type leaves prior to the visible onset of senescence. These results indicate that inhibiting ACC oxidase expression and ethylene synthesis results in delayed leaf senescence, rather than inducing a stay-green phenotype. Once senescence begins, it progresses normally. Onset of senescence is not, therefore, related to a critical level of ethylene. The correlation between higher levels prior to senescence and early onset, however, suggests that ethylene experienced by the plant may be a significant contributing factor in the timing of senescence.  相似文献   

18.
Ammonium accumulation is associated with senescence of rice leaves   总被引:6,自引:0,他引:6  
The relationship between ammonium accumulation and senescence of detached rice leaves was investigated. Ammonium accumulation in detached rice leaves coincided closely with dark-induced senescence. Exogenous NH4Cl and methionine sulfoximine, which caused an accumulation of ammonium in detached rice leaves, promoted senescence. Treatments such as light and benzyladenine, which retarded senescence, decreased ammonium level in detached rice leaves. Abscisic acid, which promoted senescence, increased ammonium level in detached rice leaves. The current results suggest that ammonium accumulation may be involved in regulating senescence. Evidence was presented to show that ammonium accumulated in detached rice leaves increases tissue sensitivity to ethylene. The accumulation of ammonium in detached rice leaves during dark-induced senescence is attributed to a decrease in glutamine synthetase activity and an increase in reduction of nitrate.  相似文献   

19.
Inorganic pyrophosphatase, peroxidase, and polyphenoloxidase activities were studied as the function of leaf insertion level in eight monocotyledonous and eight dicotyledonous species. Alkaline inorganic pyrophosphatase shows a declining activity toward the end of senescence whereas no regular drift in either peroxidase or polyphenoloxidase activities was noticed during senescence of attached leaves. In the primary leaves of rice, peroxidase and polyphenoloxidase activities were high in the senescent leaves and there exists a correlation between chlorophyll content and peroxidase activity though not with polyphenoloxidase activity. Upon detachment leaves exhibit increasing peroxidase and polyphenoloxidase activities with time. The distribution of the enzyme activities during senescence of attached leaves is suggested to be species-specific, and an increase in peroxidase and polyphenoloxidase activities cannot be taken as an indicator of leaf senescence.  相似文献   

20.
Chlorophyll degradation is an important phenomenon in the senescence process. It is necessary for the degradation of certain chlorophyll–protein complexes and thylakoid membranes during leaf senescence. Mutants retaining greenness during leaf senescence are known as 'stay-green' mutants. Non-functional type stay-green mutants, which possess defects in chlorophyll degradation, retain greenness but not leaf functionality during senescence. Here, we report a new stay-green mutant in rice, nyc3 . nyc3 retained a higher chlorophyll a and chlorophyll b content than the wild-type but showed a decrease in other senescence parameters during dark incubation, suggesting that it is a non-functional stay-green mutant. In addition, a small amount of pheophytin a , a chlorophyll a -derivative without Mg2+ ions in its tetrapyrrole ring, accumulated in the senescent leaves of nyc3 . nyc3 shows a similar but weaker phenotype to stay green ( sgr ), another non-functional stay-green mutant in rice. The chlorophyll content of nyc3 sgr double mutants at the late stage of leaf senescence was also similar to that of sgr . Linkage analysis revealed that NYC3 is located near the centromere region of chromosome 6. Map-based cloning of genes near the centromere is very difficult because of the low recombination rate; however, we overcame this problem by using ionizing radiation-induced mutant alleles harboring deletions of hundreds of kilobases. Thus, it was revealed that NYC3 encodes a plastid-localizing α/β hydrolase-fold family protein with an esterase/lipase motif. The possible function of NYC3 in the regulation of chlorophyll degradation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号