首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyploids are pervasive in plants and have large impacts on crop breeding, but natural polyploids are rare in animals. Mouse diploid embryos can be induced to become tetraploid by blastomere fusion at the 2-cell stage and tetraploid embryos can develop to the blastocyst stage in vitro. However, there is little information regarding mouse octaploid embryonic development and precise mechanisms contributing to octaploid embryonic developmental limitations are unknown. To investigate the genetic and epigenetic mechanisms underlying octaploid embryonic development, we generated mouse octaploid embryos and evaluated the in vitro/in vivo developmental potential. Here we show that octaploid embryos can develop to the blastocyst stage in vitro, but all fetus impaired immediately after implantation. Our results indicate that cell lineage specification of octaploid embryo was disorganized. Furthermore, these octaploid embryos showed increased apoptosis as well as alterations in epigenetic modifications when compared with diploid embryos. Thus, our cumulative data provide cues for why mouse octaploid embryonic development is limited and its failed postimplantation development.  相似文献   

2.
Despite the fact that spontaneous tetraploidy is a rare phenomenon in mice, such embryos may be produced experimentally by a variety of means, though only a very limited degree of postimplantation development has been achieved. Despite this apparent limitation, much data on the rate of development of preimplantation tetraploid embryos has been published. However, the findings from these studies has often been conflicting. In the light of the recent successful achievement of advanced postimplantation tetraploid development in our laboratory, we decided it was an opportune time to re-evaluate the preimplantation development of these embryos in as near to optimal conditions as we could achieve. Three groups were studied, namely 1) control (diploid) embryos developing in vivo, 2) control (diploid) embryos that had been isolated at the 2-cell stage, briefly retained in culture, then transferred to the oviducts of pseudopregnant recipients, and 3) tetraploid embryos produced by electrofusion of blastomeres at the 2-cell stage, then transferred to the oviducts of pseudopregnant recipients. Embryos were isolated from females from each group at specific times after the HCG injection to induce ovulation. The total cell number of each embryo was established and the log mean values were plotted against time. From the gradients of the lines it was possible to establish that there was a significant difference between the cell doubling time of the transferred controls (group 2) compared to the in vivo controls (group 1) with cell doubling times of 15.86 +/- 1.45 h and 10.27 +/- 0.24 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   

4.
We studied the developmental potential of single blastomeres from early cleavage mouse embryos. Eight- and sixteen-cell diploid mouse embryos were disaggregated and single blastomeres from eight-cell embryos or pairs of sister blastomeres from sixteen-cell embryos were aggregated with 4, 5 or 6 tetraploid blastomeres from 4-cell embryos. Each diploid donor embryo gave eight sister aggregates, which later were manipulated together as one group (set). The aggregates were cultured in vitro until the blastocyst stage, when they were transferred (in sets) to the oviducts of pseudopregnant recipients. Eighteen live foetuses or pups were obtained from the transfer (11.0% of transferred blastocysts) and out of those, eleven developed into fertile adults (one triplet, one pair of twins and four singletons). In all surviving adults, pups and living foetuses, only diploid cells were detected in their organs and tissues as shown by analysis of coat pigmentation and distribution of glucose phosphate isomerase isoforms. In order to explain the observed high rate of mortality of transferred blastocysts, in an accompanying experiment, the diploid and tetraploid blastomeres were labelled with different fluorochromes and then aggregated. These experiments showed the diploid cells to be present not only in the inner cell mass (ICM) but also in the trophectoderm. The low number of diploid cells and the predominance of tetraploid cells in the ICM of chimaeric blastocysts might have been responsible for high postimplantation mortality of our experimental embryos.  相似文献   

5.
Studies with intact preimplantation mouse embryos and some types of chimaeric aggregates have shown that the most advanced cells are preferentially allocated to the inner cell mass (ICM) rather than the trophectoderm. Thus, differences between 4-cell and 8-cell stage embryos could contribute to the tendency for tetraploid cells to colonise the trophectoderm more readily than the ICM in 4-cell tetraploid<-->8 cell diploid chimaeras. The aim of the present study was to test whether 4-cell stage embryos in 4-cell diploid<-->8-cell diploid aggregates contributed equally to all lineages present in the E12.5 conceptus. These chimaeras were compared with those produced from standard aggregates of two whole 8-cell embryos and aggregates of half an 8-cell embryo with a whole 8-cell embryo. As expected, the overall contribution of 4-cell embryos was lower than that of 8-cell embryos and similar to that of half 8-cell stage embryos. In the 4-cell<-->8-cell chimaeras the 4-cell stage embryos did not contribute more to the trophectoderm than the ICM derivatives. Thus, differences between 4-cell and 8-cell embryos cannot explain the restricted tissue distribution of tetraploid cells previously reported for 4-cell tetraploid<-->8-cell diploid chimaeras. It is suggested that cells from the more advanced embryo are more likely to contribute to the ICM but, for technical reasons, are prevented from doing so in simple aggregates of equal numbers of whole 4-cell and whole 8-cell stage embryos.  相似文献   

6.
Recent studies suggest early (preimplantation) events might be important in the development of polarity in mammalian embryos. We report here lineage tracing experiments with green fluorescent protein showing that cells located either near to or opposite the polar body at the 8-cell stage of the mouse embryo retain their same relative positions in the blastocyst. Thus they come to lie on either end of an axis of symmetry of the blastocyst that has recently been shown to correlate with the anterior-posterior axis of the postimplantation embryo (see R. J. Weber, R. A. Pedersen, F. Wianny, M. J. Evans and M. Zernicka-Goetz (1999). Development 126, 5591-5598). The embryonic axes of the mouse can therefore be related to the position of the polar body at the 8-cell stage, and by implication, to the animal-vegetal axis of the zygote. However, we also show that chimeric embryos constructed from 2-cell stage blastomeres from which the animal or the vegetal poles have been removed can develop into normal blastocysts and become fertile adult mice. This is also true of chimeras composed of animal or vegetal pole cells derived through normal cleavage to the 8-cell stage. We discuss that although polarity of the postimplantation embryo can be traced back to the 8-cell stage and in turn to the organisation of the egg, it is not absolutely fixed by this time.  相似文献   

7.
Abstract. Differences are described in the effects of treatment of preimplantation mouse embryos with low levels (0.01–1 n M ) of phorbol myristate acetate (PMA), during three different periods of a 48-h culture from the 2-cell stage, on pre- and postimplantation development. Treatment of embryos with PMA for 48 h (first group) or 24 h (second group) from the 2-cell stage caused premature cavitation (prior to the 16-cell stage) and it also reduced the size and alkaline phosphatase (ALPase) activity of inner cell masses (ICMs), as well as the numbers of cells in blastocysts, in a dose-dependent manner. Treatment of early morulae with PMA for 24 h (third group) did not have the abovementioned effects on embryos but inhibited the formation and subsequent enlargement of the blastocoel. The blastocysts that were allowed to develop in the three treatment groups were examined for postimplantation development. Implantation was unaffected in all groups. The survival rate after implantation was low in the first and second groups but relatively high in the third group. The results indicate that an embryo exposed to PMA for 24 h from the 2-cell stage forms a premature blastocoel, and, in such an embryo, quantitative and qualitative differentiation into the ICM is blocked but qualitative differentiation into trophectoderm is uninhibited. Consequently, the embryo can implant but does not survive for a long time. When embryos were exposed to PMA for 24 h from the early morula stage, the formation and enlargement of the blastocoel were inhibited even though the treatment had a minimal effect on other developmental events. It is suggested that the effects of PMA on early mouse development are specific to each period at which the drug is applied.  相似文献   

8.
Iu E Doronin 《Tsitologiia》1986,28(5):495-500
The Feulgen-positive particles, similar to those in the nuclei, fragments of chromosomes and the whole chromosomes, and micronuclei have been found in the cytoplasm of early mouse embryos. Some morphological peculiarities of the interphase nuclei (extrusion of nucleoli-like structures from the nuclei, so called "partial" pycnoses) and mitoses (loss of chromosomes, the pattern of distribution of condensed chromatin similar to that with C-mitosis) are described. Dead cells were found in early blastocysts. The dynamics of these phenomena was traced in the course of development starting from the 4-cell stage to the blastocyst. The high frequency of enumerated findings enables the author propose the existence of the process of chromatin degradation in normally developing mammalian embryos, which causes genetic abnormalities in some cells of the embryo. This may constitute a step of differentiation for at least provisional structures of the embryo.  相似文献   

9.
The effect of beta-endorphin on 2-, 4- and 8-cell embryo development in vitro was studied. It is shown, that hormone has no effect on 2-cell embryos development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number ofblastocyst formation increases in presence of 0.1 microM beta-endorphin in embryo cultured medium but the number of blastocyst with abnormal structure decreases. The effect of hormone on the change of intracellular concentration of Ca2+ ion in 2-, 4- and 8-cell mouse embryo has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase, and phospholipase activity blockers and opioid blocker naloxone on the change of intracellular concentration of Ca2+ ion in early mouse embryo in the presence of beta-endorphin have been also studied. It is shown that 2-cell embryo has opioid and nonopioid beta-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopoioid beta-endorphin receptors. It is also shown that the effect of beta-endorphin in the early mouse embryo through a nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

10.
Triploidy is a lethal condition in mammals, with most dying at some stage between implantation and term. In humans, however, a very small proportion of triploids are liveborn but display a wide range of congenital abnormalities. In particular, the placentas of human diandric triploid embryos consistently display “partial” hydatidiform molar degeneration, while those of digynic triploids generally do not show these histopathological features. In mice, the postimplantation development of diandric and digynic triploid embryos also differs. While both classes are capable of developing to the forelimb bud stage, no specific degenerative features of their placentas have been reported. Diandric triploid mouse embryos are morphologically normal while digynic triploid mouse embryos consistently display neural tube and occasionally cardiac abnormalities. Previously it was shown that the preimplantation development of micromanipulated diandric triploid mouse embryos was similar to developmentally matched diploid control embryos. In this study, the preimplantation development of micromanipulated digynic triploid mouse embryos is analysed and compared with that of diandric triploid mouse embryos in order to determine whether there is any difference in cleavage rate between these two classes of triploids. Standard micromanipulatory procedures were used to insert a female or a male pronucleus into a recipient diploid 1-cell stage embryo. The karyoplast was fused to the cytoplasm of the embryo by electrofusion. These tripronucleate 1-cell stage embryos were then transferred to pseudopregnant recipients and, at specific times after the HCG injection to induce ovulation, the embryos were recovered and total cell counts made. These results were plotted and regression lines drawn. An additional control group of embryos was subjected to similar micromanipulatory procedures to those used in the experimental study. These embryos had a single pronucleus removed and this was then reinserted into the perivitelline space. Diploidy was immediately restored by electrofusion. These embryos were transferred to recipients and at specific times after the HCG injection the embryos were recovered and total cell counts made. These results were also plotted and regression lines drawn. The results show that the cell doubling time of the digynic triploid embryos was 14.84 h (± 1.19). This was not significantly different from that of the diandric triploid embryos (13.55 h ± 0.86; P > 0.05) or of the manipulated diploid controls (12.12 h ± 0.79; P > 0.05). © 1993 Wiley-Liss, Inc.  相似文献   

11.
The effect of β-endorphin on 2-, 4-, and 8-cell embryo development in vitro was studied. It is shown that the hormone has no effect on a 2-cell embryo development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number of blastocyst formations increases in the presence of 0.1 μM β-endorphin in embryo cultured medium, and the number of blastocysts with abnormal structure decreases. The effect of the hormone on the change of intracellular concentration of Ca2+ ions in 2-, 4-, and 8-cell mouse embryos has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase and phospholipase activity blockers, and naloxone on the change of intracellular concentration of Ca2+ ions in the early mouse embryo in the presence of β-endorphin has also been studied. It is shown that 2-cell embryos have opioid and nonopioid β-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopioid β-endorphin receptors. It is also shown that the effect of β-endorphin in the early mouse embryo through nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

12.
Cloning by somatic cell nuclear transfer is critically dependent upon early events that occur immediately after nuclear transfer, and possibly additional events that occur in the cleaving embryo. Embryo culture conditions have not been optimized for cloned embryos, and the effects of culture conditions on these early events and the successful initiation of clonal development have not been examined. To evaluate the possible effect of culture conditions on early cloned embryo development, we have compared a number of different culture media, either singly or in sequential combinations, for their ability to support preimplantation development of clones produced using cumulus cell nuclei. We find that glucose is beneficial during the 1-cell stage when CZB medium is employed. We also find that potassium simplex optimized medium (KSOM), which is optimized to support efficient early cleavage divisions in mouse embryos, does not support development during the 1-cell or 2-cell stages in the cloned embryos as well as other media. Glucose-supplemented CZB medium (CZB-G) supports initial development to the 2-cell stage very well, but does not support later cleavage stages as well as Whittten medium or KSOM. Culturing cloned embryos either entirely in Whitten medium or initially in Whittens medium and then changing to KSOM at the late 4-cell/early 8-cell stage produces consistent production of blastocysts at a greater frequency than using CZB-G medium alone. The combination of Whitten medium followed by KSOM resulted in an increased number of cells per blastocyst. Because normal embryos do not require glucose during the early cleavage stages and develop efficiently in all of the media employed, these results reveal unusual culture medium requirements that are indicative of altered physiology and metabolism in the cloned embryos. The relevance of this to understanding the kinetics and mechanisms of nuclear reprogramming and to the eventual improvement of the overall success in cloning is discussed.  相似文献   

13.
LIMKs (LIMK1 and LIMK2) are serine/threonine protein kinases that involve in various cellular activities such as cell migration, morphogenesis and cytokinesis. However, its roles during mammalian early embryo development are still unclear. In the present study, we disrupted LIMK1/2 activity to explore the functions of LIMK1/2 during mouse early embryo development. We found that p-LIMK1/2 mainly located at the cortex of each blastomeres from 2-cell to 8-cell stage, and p-LIMK1/2 also expressed at morula and blastocyst stage in mouse embryos. Inhibition of LIMK1/2 activity by LIMKi 3 (BMS-5) at the zygote stage caused the failure of embryo early cleavage, and the disruption of LIMK1/2 activity at 8-cell stage caused the defects of embryo compaction and blastocyst formation. Fluorescence staining and intensity analysis results demonstrated that the inhibition of LIMK1/2 activity caused aberrant cortex actin expression and the decrease of phosphorylated cofilin in mouse embryos. Taken together, we identified LIMK1/2 as an important regulator for cofilin phosphorylation and actin assembly during mouse early embryo development.  相似文献   

14.
目的观察硫氧还蛋白过氧化物酶Ⅱ(Peroxiredoxin Ⅱ,PrxII)是否可以克服昆明(Kunming)小鼠早胚体外发育2-细胞阻滞。方法取昆明小鼠1-细胞胚置于含PrxII蛋白的M16培养液中培养,观察PrxII对昆明小鼠早胚发育潜能和2-细胞胚内活性氧自由基(reactive oxygen species,ROS)水平的影响;同时比较昆明和B6C3F1小鼠1-细胞胚在M16中各自的发育情况;激光扫描共聚焦显微镜分别检测比较昆明与B6C3F1小鼠体外培养2-细胞胚内ROS水平以及昆明小鼠体外培养与体内发育2-细胞胚内ROS水平。结果M16培养液中添加PrxII蛋白(1nmol/L和100nMol/L)可以明显降低昆明小鼠体外培养2-细胞胚内ROS水平(P<0.05),但不能克服昆明小鼠体外发育2-细胞阻滞;昆明小鼠1-细胞胚在M16中培养存在2-细胞阻滞现象,而B6C3F1小鼠无2-细胞阻滞现象;昆明小鼠体外培养2-细胞胚内ROS水平显著低于体内发育2-细胞胚(P<0.05),亦略低于B6C3F1小鼠体外培养2-细胞胚内ROS水平(P>0.05)。结论M16培养液中添加PrxII可以明显降低2-细胞胚...  相似文献   

15.
This study was designed to assess the degree of cell mixing that occurs during the early development of the mouse embryo, and thus provide information which is important in relation to the current theories of differentiation. Previous studies of this nature have involved either chimeric composites, or have only followed a very limited number of cells in the embryo. Here the products of one of the 4-cell stage blastomeres have been labeled with tritiated thymidine, at a level which allows their descendants to be identified three or four cell divisions later, and recombined with the remaining blastomeres of the same embryo. After fixing and sectioning of the embryos at the blastocyst stage the locations of the labelled cells have been analyzed to assess the degree of clumping that they display. A significant tendency for the products of this one 4-cell stage blastomere to be confined to a single area in the blastocyst is demonstrated. This indicates that there is little marked cell movement during the observation period. The relevance of these results to current knowledge of blastocyst development is discussed.  相似文献   

16.
One-cell CF-1 x B6SJLF1/J embryos, which usually exhibit a 2-cell block to development in vitro, have been cultured to the blastocyst stage using CZB medium and a glucose washing procedure. CZB medium is a further modification of modified BMOC-2 containing an increased lactate/pyruvate ratio of 116, 1 mM-glutamine and 0.1 mM-EDTA but lacking glucose. Continuous culture of one-cell embryos in CZB medium allowed 83% of embryos to develop beyond the 2-cell stage of which 63% were morulae at 72 h of culture, but blastocysts did not develop. However, washing embryos into CZB medium containing glucose after 48 h of culture (3-4-cell stage) was sufficient to allow development to proceed, with 48% of embryos reaching the blastocyst stage by 96 h of culture. Exposure of embryos to glucose was only necessary from the 3-4-cell stage through the early morula stage since washing back into medium CZB without glucose at 72 h of culture still promoted the development of 50% of embryos to the blastocyst stage. The presence of glucose in this medium for the first 48 h of culture (1-cell to 4-cell stage) was detrimental to embryo development. Glutamine, however, exerted a beneficial effect on embryo development from the 1-cell to the 4-cell stage although its presence was not required for development to proceed during the final 48 h of culture. Blastocysts which developed under optimum conditions contained an average of 33.7 total cells. The in-vitro development of 1-cell embryos beyond the 2-cell stage in response to the removal of glucose and the addition of glutamine to the culture medium suggests that glucose may block some essential metabolic process, and that glutamine may be a preferred energy substrate during early development for these mouse embryos.  相似文献   

17.
胚胎密闭培养是空间胚胎发育研究的基本条件.本文主要研究密闭培养条件对小鼠早期胚胎发育过程中印迹基因Igf2/H19的印迹调控区(ICR)甲基化水平的影响.应用亚硫酸氢盐测序法(BSP)分析小鼠2-细胞胚胎在密闭条件下分别培养24h、48h和72h后,相对应的发育阶段胚胎Igf2/H19的ICR甲基化水平,以常规体外培养和体内发育的各阶段胚胎为对照.结果显示,密闭培养条件下,小鼠8-细胞胚胎、桑葚胚和囊胚的Igf2/H19的ICR甲基化水平都低于常规体外培养的结果,且更明显低于体内发育的结果;同时发现,小鼠8-细胞胚胎密闭培养时,Igf2/H19的ICR甲基化水平最低.由此可见,密闭培养会引起小鼠植入前各发育阶段胚胎Igf2/H19的ICR甲基化水平降低,并证明Igf2/H19的ICR甲基化水平可以作为监测哺乳动物早期胚胎发育状况的分子指标.  相似文献   

18.
To date, cloned farm animals have been produced by nuclear transfer from embryonic, fetal, and adult cell types. However, mice completely derived from embryonic stem (ES) cells have been produced by aggregation with tetraploid embryos. The objective of the present study was to generate offspring completely derived from bovine ES-like cells. ES-like cells isolated from the inner cell mass of in vitro-produced embryos were aggregated with tetraploid bovine embryos generated by electrofusion at the 2-cell stage. A total of 77 embryo aggregates produced by coculture of two 8-cell-stage tetraploid embryos and a clump of ES-like cells were cultured in vitro. Twenty-eight of the aggregates developed to the blastocyst stage, and 12 of these were transferred to recipient cows. Six calves representing 2 singletons and 2 sets of twins were produced from the transfer of the chimeric embryos. Microsatellite analysis for the 6 calves demonstrated that one calf was chimeric in the hair roots and the another was chimeric in the liver. However, unfortunately, both of these calves died shortly after birth. Two of the placentae from the remaining pregnancies were also chimeric. These results indicate that the bovine ES-like cells used in these studies were able to contribute to development.  相似文献   

19.
Glucose transporter gene expression in early mouse embryos.   总被引:7,自引:0,他引:7  
The glucose transporter (GLUT) isoforms responsible for glucose uptake in early mouse embryos have been identified. GLUT 1, the isoform present in nearly every tissue examined including adult brain and erythrocytes, is expressed throughout preimplantation development. GLUT 2, which is normally present in adult liver, kidney, intestine and pancreatic beta cells is expressed from the 8-cell stage onward. GLUT 4, an insulin-recruitable isoform, which is expressed in adult fat and muscle, is not expressed at any stage of preimplantation development or in early postimplantation stage embryos. Genetic mapping studies of glucose transporters in the mouse show that Glut-1 is located on chromosome 4, Glut-2 on chromosome 3, Glut-3 on chromosome 6, and Glut-4 on chromosome 11.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号