首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.  相似文献   

2.
Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.  相似文献   

3.
We present a mitochondrial (mt) genome phylogeny inferring relationships within Neuropterida (lacewings, alderflies and camel flies) and between Neuropterida and other holometabolous insect orders. Whole mt genomes were sequenced for Sialis hamata (Megaloptera: Sialidae), Ditaxis latistyla (Neuroptera: Mantispidae), Mongoloraphidia harmandi (Raphidioptera: Raphidiidae), Macrogyrus oblongus (Coleoptera: Gyrinidae), Rhopaea magnicornis (Coleoptera: Scarabaeidae), and Mordella atrata (Coleoptera: Mordellidae) and compared against representatives of other holometabolous orders in phylogenetic analyses. Additionally, we test the sensitivity of phylogenetic inferences to four analytical approaches: inclusion vs. exclusion of RNA genes, manual vs. algorithmic alignments, arbitrary vs. algorithmic approaches to excluding variable gene regions and how each approach interacts with phylogenetic inference methods (parsimony vs. Bayesian inference). Of these factors, phylogenetic inference method had the most influence on interordinal relationships. Bayesian analyses inferred topologies largely congruent with morphologically‐based hypotheses of neuropterid relationships, a monophyletic Neuropterida whose sister group is Coleoptera. In contrast, parsimony analyses failed to support a monophyletic Neuropterida as Raphidioptera was the sister group of the entire Holometabola excluding Hymenoptera, and Neuroptera + Megaloptera is the sister group of Diptera, a relationship which has not previously been proposed based on either molecular or morphological data sets. These differences between analytical methods are due to the high among site rate heterogeneity found in insect mt genomes which is properly modelled by Bayesian methods but results in artifactual relationships under parsimony. Properly analysed, the mt genomic data set presented here is among the first molecular data to support traditional, morphology‐based interpretations of relationships between the three neuropterid orders and their grouping with Coleoptera.  相似文献   

4.
We report the complete mitochondrial DNA sequence of the spotted asparagus beetle, Crioceris duodecimpunctata. The genome complement, gene order, and nucleotide composition of this beetle's mitochondrial genome were found to be typical of those reported for other insects. Unusual features of this genome include the substitution of UCU for GCU as the anticodon for tRNA(Ser), an unusual TpsiC loop for the tRNA(Ile) gene, and the identification of a putative ATT start codon for cox1. The utility of complete mitochondrial genome data for phylogenetic inference of the insect orders was tested, and compared to that of cox1 and combined mitochondrial ribosomal DNA sequences. Even though the number of insect orders represented by complete mitochondrial genomes is still limited, several well-established relationships are evident in the phylogenetic analysis of the complete sequences. Monophyly of the orders Diptera, Lepidoptera, and Coleoptera were consistently recovered. Monophyly of the Holometabola was also observed in some (though not all) analyses. The accumulation of complete mitochondrial sequences from a broader array of insect orders holds the promise of clarifying the early diversification of insects.  相似文献   

5.
Aligned 18S and insect phylogeny   总被引:20,自引:0,他引:20  
Kjer KM 《Systematic biology》2004,53(3):506-514
The nuclear small subunit rRNA (18S) has played a dominant role in the estimation of relationships among insect orders from molecular data. In previous studies, 18S sequences have been aligned by unadjusted automated approaches (computer alignments that are not manually readjusted), most recently with direct optimization (simultaneous alignment and tree building using a program called "POY"). Parsimony has been the principal optimality criterion. Given the problems associated with the alignment of rRNA, and the recent availability of the doublet model for the analysis of covarying sites using Bayesian MCMC analysis, a different approach is called for in the analysis of these data. In this paper, nucleotide sequence data from the 18S small subunit rRNA gene of insects are aligned manually with reference to secondary structure, and analyzed under Bayesian phylogenetic methods with both GTR+I+G and doublet models in MrBayes. A credible phylogeny of Insecta is recovered that is independent of the morphological data and (unlike many other analyses of 18S in insects) not contradictory to traditional ideas of insect ordinal relationships based on morphology. Hexapoda, including Collembola, are monophyletic. Paraneoptera are the sister taxon to a monophyletic Holometabola but weakly supported. Ephemeroptera are supported as the sister taxon of Neoptera, and this result is interpreted with respect to the evolution of direct sperm transfer and the evolution of flight. Many other relationships are well-supported but several taxa remain problematic, e.g., there is virtually no support for relationships among orthopteroid orders. A website is made available that provides aligned 18S data in formats that include structural symbols and Nexus formats.  相似文献   

6.
Kim I  Cha SY  Yoon MH  Hwang JS  Lee SM  Sohn HD  Jin BR 《Gene》2005,353(2):155-168
The complete nucleotide sequences of the mitochondrial genome (mitogenome) of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae), were determined. The 15,521-bp-long G. orientalis mitogenome contains typical gene complement, base composition, and codon usage found in metazoan mitogenomes. The G. orientalis mitogenome contains the third lowest A+T content (70.5%) among the complete insects mt genome sequences. The initiation codon for the G. orientalis COI gene appears to be ATG, instead of the tetranucleotides, which have been postulated to act as initiation codon for Locusta migratoria and some lepidopteran COI genes. The initiation codon for ND2 appears to be GTG, which is rare, but has been designated as an initiator of Tricholepidion gertschi ND2. All anticodons of G. orientalis tRNAs were identical to Drosophila yakuba and L. migratoria. The tRNA(Ser)(AGN) could not form a stable stem loop structure in the DHU arm as shown in many other insect tRNA(Ser)(AGN). Phylogenetic analysis of nucleotide sequence information from all mt genes supported a monophyletic Diptera, a monophyletic Lepidoptera, a monophyletic Coleoptera, a monophyletic Mecopterida (Diptera+Lepidoptera), and a monophyletic Endopterygota (Diptera+Lepidoptera+Coleoptera), suggesting that the complete insect mitogenome sequence has a resolving power to the diversification events within Endopterygota. However, the relationships of ancient insect orders were unstable, indicating the limited use of mitogenome information at deeper phylogenetic depth.  相似文献   

7.
Phylogeny of the holometabolous insect orders: molecular evidence   总被引:9,自引:0,他引:9  
Phylogenetic relationships among the holometabolous insect orders were reconstructed using 18S ribosomal DNA data drawn from a sample of 182 taxa representing all holometabolous insect orders and multiple outgroups. Parsimony analysis supports the monophyly of all holometabolous insect orders except for Coleoptera and Mecoptera. Mecoptera is paraphyletic with respect to Siphonaptera, which is nested within Mecoptera. Coleoptera is scattered as a paraphyletic assemblage across the tree topology. These data support a monophyletic Halteria (Strepsiptera + Diptera), Amphiesmenoptera (Trichoptera + Lepidoptera), Neuropterida (Neuroptera + (Megaloptera + Raphidioptera)), but Antliophora (Halteria + Mecoptera + Siphonaptera) and Mecopterida (Antliophora + Amphiesmenoptera) are paraphyletic. The limitations of using 18S ribosomal DNA as the sole phylogenetic marker for reconstructing insect ordinal relationships are discussed.  相似文献   

8.
Megaloptera are a basal holometabolous insect order with larvae exclusively predacious and aquatic. The evolutionary history of Megaloptera attracts great interest because of its antiquity and important systematic status in Holometabola. However, due to the difficulties identifying morphological apomorphies for the group, controversial hypotheses on the monophyly and higher phylogeny of Megaloptera have been proposed. Herein, we describe the complete mitochondrial (mt) genome of a fishfly species, Neochauliodes punctatolosus Liu & Yang, 2006, representing the first mt genome of the subfamily Chauliodinae. A phylogenomic analysis was carried out based on the mt genomic sequences of 13 mt protein-coding genes (PCGs) and two rRNA genes of nine Neuropterida species, comprising all three orders of Neuropterida and all families and subfamilies of Megaloptera. Both maximum likelihood and Bayesian inference analyses highly support the monophyly of Megaloptera, which was recovered as the sister of Neuroptera. Within Megaloptera, the sister relationship between Corydalinae and Chauliodinae was corroborated. The divergence time estimation suggests that stem lineage of Neuropterida and Coleoptera separated in the Early Permian. The interordinal divergence within Neuropterida might have occurred in the Late Permian.  相似文献   

9.
Basal relationships of Coleoptera inferred from 18S rDNA sequences   总被引:5,自引:2,他引:3  
The basal relationships of the hyperdiverse insect order Coleoptera (beetles) have proven difficult to resolve. Examination of beetle suborder relationships using 18S ribosomal DNA reveals a previously unproposed relationship among the four major lineages: [(Archostemata(Myxophaga(Adephaga, Polyphaga)))]. Adding representatives of most other insect orders results in a non-monophyletic Coleoptera. However, constraining Coleoptera and its suborders to be monophyletic, in analyses of beetle and outgroup sequences, also results in the above beetle relationships, with the root placed between Archostemata and the remaining suborders.  相似文献   

10.
The diet of the lesser horseshoe bat Rhinolophus hipposideros was investigated over one season by analysing faeces and discarded insect fragments collected on polythene sheets at eight roosts. Remains of 23 insect families from seven orders (Lepidoptera, Neuroptera, Trichoptera, Hymenoptera, Coleoptera, Diptera and Hemiptera) and of spiders (Araneae: Arachnida) were identified. Nematoceran Diptera were the chief prey but Lepidoptera, Trichoptera and Neuroptera were also important. Both locational and seasonal variation were demonstrated for some food categories. The predicted seasonal availability of the different insect taxa is broadly reflected in the results: the question of possible prey selection is discussed. The bat fed successfully on three families of Lepidoptera known to possess hearing organs sensitive to bat ultrasounds. The possible mechanisms by which R. hipposideros might catch such prey are reviewed.  相似文献   

11.
We present the largest morphological character set ever compiled for Holometabola. This was made possible through an optimized acquisition of data. Based on our analyses and recently published hypotheses based on molecular data, we discuss higher‐level phylogeny and evolutionary changes. We comment on the information content of different character systems and discuss the role of morphology in the age of phylogenomics. Microcomputer tomography in combination with other techniques proved highly efficient for acquiring and documenting morphological data. Detailed anatomical information (356 characters) is now available for 30 representatives of all holometabolan orders. A combination of traditional and novel techniques complemented each other and rapidly provided reliable data. In addition, our approach facilitates documenting the anatomy of model organisms. Our results show little congruence with studies based on rRNA, but confirm most clades retrieved in a recent study based on nuclear genes: Holometabola excluding Hymenoptera, Coleopterida (= Strepsiptera + Coleoptera), Neuropterida excl. Neuroptera, and Mecoptera. Mecopterida (= Antliophora + Amphiesmenoptera) was retrieved only in Bayesian analyses. All orders except Megaloptera are monophyletic. Problems in the analyses are caused by taxa with numerous autapomorphies and/or inapplicable character states due to the loss of major structures (such as wings). Different factors have contributed to the evolutionary success of various holometabolan lineages. It is likely that good flying performance, the ability to occupy different habitats as larvae and adults, parasitism, liquid feeding, and co‐evolution with flowering plants have played important roles. We argue that even in the “age of phylogenomics”, comparative morphology will still play a vital role. In addition, morphology is essential for reconstructing major evolutionary transformations at the phenotypic level, for testing evolutionary scenarios, and for placing fossil taxa.
© The Willi Hennig Society 2010.  相似文献   

12.
Data on species richness and taxon age are assembled for the extant hexapod orders (insects and their six-legged relatives). Coupled with estimates of phylogenetic relatedness, and simple statistical null models, these data are used to locate where, on the hexapod tree, significant changes in the rate of cladogenesis (speciation-minus-extinction rate) have occurred. Significant differences are found between many successive pairs of sister taxa near the base of the hexapod tree, all of which are attributable to a shift in diversification rate after the origin of the Neoptera (insects with wing flexion) and before the origin of the Holometabola (insects with complete metamorphosis). No other shifts are identifiable amongst supraordinal taxa. Whilst the Coleoptera have probably diversified faster than either of their putative sister lineages, they do not stand out relative to other closely related clades. These results suggest that any Creator had a fondness for a much more inclusive clade than the Coleoptera, definitely as large as the Eumetabola (Holometabola plus bugs and their relatives), and possibly as large as the entire Neoptera. Simultaneous, hence probable causative events are discussed, of which the origin of wing flexion has been the focus of much attention.  相似文献   

13.

Background  

Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders.  相似文献   

14.
15.
Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes   总被引:5,自引:0,他引:5  
We assessed the ability of three nuclear protein-encoding genes-elongation factor-1alpha (EF-1alpha), RNA polymerase II (Pol II), and elongation factor-2 (EF-2)-from 59 myriapod and 12 non-myriapod species to resolve phylogenetic relationships among myriapod classes and orders. In a previous study using EF-1alpha and Pol II (2134 nt combined) from 34 myriapod taxa, Regier and Shultz recovered widely accepted classes, orders, and families but failed to resolve interclass and interordinal relationships. The result was attributed to heterogenous rates of cladogenesis (specifically, the inability of the slowly evolving sequences to capture phylogenetic signal during rapid phylogenetic diversification) but the possibility of inadequate taxon sampling or limited sequence information could not be excluded. In the present study, the myriapod taxon sample was increased by 25 taxa (73%) and sequence length per taxon was effectively doubled through addition of EF-2 (4318 nt combined). Parsimony and Bayesian analyses of the expanded data set recovered a monophyletic Myriapoda, all four myriapod classes and all multiply sampled orders, often with high node support. However, except for three diplopod clades (Colobognatha, Helminothomorpha, and a subgroup of Pentazonia), few interordinal relationships and no interclass relationships were well supported. These results are similar to those of the earlier study by Regier and Shultz, which indicates that taxon sample and sequence length alone do not readily explain the weakly supported resolution in the earlier study. We review recent paleontological evidence to further develop our proposal that heterogeneity in phylogenetic signal provided by our slowly evolving sequences is due to heterogeneity in the temporal structure of myriapod diversification.  相似文献   

16.
The mitochondrial genome (mitogenome) is one of the most widely used markers for phylogenetic analysis. Compared with whole-genome data, mitogenome data are less expensive to obtain and easier to manipulate. However, compositional bias and accelerated evolutionary rate reduce the effectiveness of the mitogenome in determining insect phylogeny. This study shows that mitogenome data are not suitable to reconstruct deep holometabolan evolution, even with a most comprehensive data coding scheme and the more realistic CAT model. For the deep levels of divergence within Holometabola, protein-coding genes only retain weak phylogenetic signals, leading to peculiar interordinal relationships. Consensus relationships in the Holometabola phylogeny, such as the monophyly of Holometabola, the most basal position of Hymenoptera, and the sister group relationship between the Strepsiptera and Coleoptera were rarely resolved in our analyses. The relationships of the holometabolan groups as inferred by mitogenomes are highly vulnerable to gene types, data coding regimes, model choice, and optimality criteria, and no consistent alternative hypothesis of Holometabola's relationships is supported. Thus, we suggest that the slowly evolving nuclear genes or genome-scale approaches may be better options for resolving deep-level phylogeny of Holometabola.  相似文献   

17.
从12目具翅昆虫中选出16个代表种,对其后足基骨片的形态特征在不同类群中的衍变进行分析比较,据此构建反映下列初步进化关系的系统树:[Ephemeroptera+(Odonata+Neoptera)]+[Plecoptera+(Megaloptera+Neuroptera+(Orthoptera+(Hemiptera+(...  相似文献   

18.
In this study, we investigated the relationships among insect orders with a main focus on Polyneoptera (lower Neoptera: roaches, mantids, earwigs, grasshoppers, etc.), and Paraneoptera (thrips, lice, bugs in the wide sense). The relationships between and within these groups of insects are difficult to resolve because only few informative molecular and morphological characters are available. Here, we provide the first phylogenomic expressed sequence tags data ('EST': short sub-sequences from a c(opy) DNA sequence encoding for proteins) for stick insects (Phasmatodea) and webspinners (Embioptera) to complete published EST data. As recent EST datasets are characterized by a heterogeneous distribution of available genes across taxa, we use different rationales to optimize the data matrix composition. Our results suggest a monophyletic origin of Polyneoptera and Eumetabola (Paraneoptera + Holometabola). However, we identified artefacts of tree reconstruction (human louse Pediculus humanus assigned to Odonata (damselflies and dragonflies) or Holometabola (insects with a complete metamorphosis); mayfly genus Baetis nested within Neoptera), which were most probably rooted in a data matrix composition bias due to the inclusion of sequence data of entire proteomes. Until entire proteomes are available for each species in phylogenomic analyses, this potential pitfall should be carefully considered.  相似文献   

19.
Despite numerous studies, there is no single accepted hypothesis of eutherian ordinal relationships. Among the least understood mammalian orders is the group Insectivora. Currently, molecular and morphological data are in conflict over the possible monophyly of the living members of Insectivora (lipotyphlans), and the relationships within the group remain largely unresolved. One of the primary criticisms concerning molecular analyses is the noticeable lack of data from a well-sampled group of lipotyphlan insectivores. The mitochondrial 12S rRNA gene has been widely used to resolve interordinal and intraordinal relationships across a variety of mammalian taxa. This study compares 118 complete mammalian 12S rRNA sequences, representing all of the 18 eutherian orders and 3 metatherian orders, and includes as well taxa from each of the six families of lipotyphlan insectivores. Insectivoran lineages are thought to have diverged concurrently with the general radiation of mammalian orders. This study suggests that the 12S rRNA sequences lack the ability to resolve relationships extending into this period. This would explain the polyphyly, unusual affinities, and low support derived in this and other studies employing 12S rRNA sequences to diagnose relationships among eutherian orders. The results of these analyses suggest that even extensive taxon sampling is insufficient to provide well supported groups among eutherian orders. Additional genes and species sampling will be necessary to elucidate whether the Insectivora form a monophyletic group.  相似文献   

20.
昆虫物种多样性在生物多样性保护研究中有重要地位。湖北神农架自然保护区生物多样性极其丰富,保存状态相对良好,是我国生物多样性研究的关键地区之一。然而该地区的昆虫多样性研究极为薄弱,就是一般的物种调查也为数不多,所以调查主要昆虫类群的组成与数量变化,能为本区的生物多样性研究积累资料,并为长期监测打下基础。我们选择暖温带针叶林、落叶阔叶林、针阔叶混交林、亚高山草甸、箭竹林及溪边灌丛6种不同环境,以23块样地为代表,以巴氏罐诱法为主,结合网筛、扫网等方法,进行全面的标本采集与数据收集。经初步整理鉴定和数据分析,得到如下结果:(1)共获得标本58 368号,昆虫标本46 213号,其中膜翅目和鞘翅目数量较多,其次为半翅目、同翅目、双翅目、直翅目及脉翅目等。此外,环节动物、软体动物、多足纲及蛛形纲动物也有相当数量。在膜翅目中,个体数量最多的是蚂蚁(蚁科);在鞘翅目中个体数量较多的类群依次是隐翅虫科、步甲科和叶甲科。(2)昆虫分布与环境的关系非常密切:仅从较高分类阶元来看,如昆虫纲的鞘翅目、双翅目、直翅目、膜翅目等,不同环境对昆虫数量分布的影响并不显著;而从相对低的分类阶元来看,如统计鞘翅目中步甲科、隐翅虫科等,则可以显示不同环境对昆虫数量分布的显著影响。(3)在一些特殊地点,发现若干比较特殊的昆虫物种,这表明神农架地区在昆虫物种保护上具有特殊地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号