首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay comprising two simple, selective and isocratic HPLC methods with UV detection was developed and validated for measuring warfarin enantiomers and all five warfarin monohydroxylated metabolites in patient blood plasma. Following liquid/liquid extraction from 1 ml of blood plasma a baseline separation of analytes was achieved on chiral (alpha(1) acid glycoprotein - AGP) and achiral (C(18)) column. Both methods were consistent (R.S.D.<6.9% for warfarin enantiomers and<8.9% for monohydroxylated metabolites) and linear (r>0.998). The limits of detection were 25 ng/ml for warfarin enantiomers, 25 ng/ml for 4'-, 10-, 6- and 7-hydroxywarfarin, 35 ng/ml for 8-hydroxywarfarin and 50 ng/ml for racemic warfarin. In a clinical study in 204 patients, it was confirmed that the assay is appropriate for evaluation of influences of genetic polymorphisms, demographic factors and concomitant drug treatment on warfarin metabolism.  相似文献   

2.
The binding of drugs known to interact with area I on human serum albumin (HSA) was investigated using a chiral stationary phase obtained by anchoring HSA to a silica matrix. In particular, this high-pressure affinity chromatography selector was employed to study the binding properties of the individual enantiomers of warfarin. The pH and composition of the mobile phase modulate the enantioselective binding of warfarin. Displacement chromatography experiments evidenced significant differences in the binding of the warfarin enantiomers to site I. The (S)-enantiomer was shown to be a direct competitor for (R)-warfarin, while (R)-warfarin was an indirect competitor for the (S)-enantiomer. Salicylate directly competed with (R)-warfarin and indirectly with (S)-warfarin. This behavior was confirmed by difference CD experiments, carried out with the same [HSA]/[drug] system in solution.  相似文献   

3.
HPLC and 1H-NMR methods for the quantitation of the (R)-enantiomer in (?)-(S)-timolol maleate were developed and validated. The HPLC method requires a 25 cm × 4.6 mm 5 μm Chiracel OD-H (cellulose tris-3,5-dimethylphenylcarbamate) column, a mobile phase of 0.2% (v/v) diethylamine and 4% (v/v) isopropanol in hexane at a flow rate of 1 ml/min and UV detection at 297 nm. A system suitability test was devised to verify the separation of the (R)- and (S)-enantiomers of timolol from other drug-related impurities. The NMR method requires the use of a high-field NMR spectrometer (>360 MHz) and a chiral solvating agent, (?)-(R)-2,2,2-trifluoro-1-(9-anthrylethanol) (R-TFAE). The limits of quantitation were 0.05% and 0.2% (m/m) for HPLC and NMR, respectively. The methods were applied to the determination of the (R)-enantiomer in eight lots of raw material. The results for the two methods were in very good agreement, with results ranging from 0.1 to 4.1% (m/m) by HPLC and none detected to 4.3% (m/m) by NMR. The USP method for specific rotation was found to be unsuitable for detecting the presence of low levels of the (R)-enantiomer in (?)-(S)-timolol maleate. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The function of sialic acid groups at the terminal of sugar chains of human α1-acid glycoprotein (AGP) was investigated with respect to chiral discrimination between optical isomers of basic drugs, using high-performance capillary electrophoresis/frontal analysis (HPCE/FA), a novel analytical method developed for the determination of unbound drug concentration with ultramicrosample volume (100–200 nl). Native human AGP and desialylated AGP were used as test proteins, and propranolol (PRO) and verapamil (VER) were used as model drugs. The unbound concentration of (S)-VER was 1.31 times higher than that of (R)-VER in native AGP solution. This selectivity was not affected by desialylation. Further, enzymatic elimination of galactose residues, which neighbored sialic acid groups, did not change the binding of either isomer of VER. On the other hand, the unbound concentration of (R)-PRO was 1.27 times higher than that of (S)-PRO in native AGP solution. Desialylation caused the unbound concentration of (S)-PRO to rise to the same level of (R)-PRO, resulting in loss of enantioselectivity. Thus, it follows that sialic acid groups of AGP, as a whole, are not responsible for chiral recognition between enantiomers of VER but are involved in enantioselectivity toward the isomers of PRO. Chirality 9:291–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Shen B  Xu X  Chen J  Zhang X  Xu B 《Chirality》2006,18(9):757-761
Conditions for separation of enantiomers of a mandelic acid derivative, methyl 2-phenyl-2-(tetrahydropyranyloxy) acetate (the analyte) were studied. Because of the presence of two chiral carbons, the analyte consists of four stereoisomers stable at ambient temperature. Chiral HPLC of the analyte resulted in four peaks, using an (S,S)-Whelk-O1 column with the mobile phase consisting of hexane and the t-butyl methyl ether (TBME). It was found that TBME dramatically changed the retention of the isomers, though it produced the best enantioseparation on (S,S)-Whelk-O1. The amount of TBME in the mobile phase influenced the degree of retention shift; 5% (v/v) TBME gave a bigger shift than 8% (v/v) and 10% (v/v). 2-Propanol did not produce the same results. The chiral separation was also tried on cellulose tris (3, 5-dimethyl phenylcarbamate) (CDMPC), but only three peaks were seen, indicating some but not full enantiomer resolution.  相似文献   

6.
The synthesis of a diastereomerically pure 10-hydroxywarfarin [4-hydroxy-3-(2-hydroxy-3-oxo-1-phenylbutyl)-2H-1 benzopyran-2-one] was accomplished in three steps from racemic warfarin. The relative configuration of the synthetic product was established by conversion to a cyclic derivative followed by NMR and X-ray diffraction analysis. Absolute stereochemistry was determined by enzymatic conversion of either of the pure enantiomers of warfarin to a 10-hydroxy metabolite of known relative configuration. Metabolic formation of 10-hydroxywarfarin was studied using hepatic microsomal preparations from female rats and man. The formation of 10-hydroxywarfarin catalyzed by hepatic microsomes from both dexamethasone-treated rats and man was highly stereoselective [(R)/(S): 3.4-9.0] for (R)-warfarin. In contrast, little stereoselectivity was observed in reactions catalyzed by untreated rat liver microsomes. The resultant stereochemistry at the site of oxidation was also found to be highly dependent on substrate stereochemistry. (R)-Warfarin gave (9R;10S)-10-hydroxywarfarin with only a trace of the (9R;10R) isomer irrespective of which enzyme preparation was used for catalysis, while (S)-warfarin gave (9S;10R)-10-hydroxywarfarin with only a trace of the (9S;10S) isomer, again irrespective of which enzyme preparation was used for catalysis.  相似文献   

7.
Studies investigating the relationship between CYP2C19 genotype and the stereoselective metabolism of omeprazole have not been reported. In the present study, we developed a simple and sensitive analytical method based on column switching reversed phase high-performance liquid chromatography (HPLC) with UV detection to determine the concentrations of (R)- and (S)-omeprazole and of its principal metabolites, (R)- and (S)-5-hydroxyomeprazole, and the non-chiral, omeprazole sulfone, in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether:dichloromethane (60:40, v/v) followed by clean-up on a TSK BSA-ODS/S column (5 μm, 10 mm × 4.6mm i.d.) using phosphate buffer:acetonitrile (97:3, v/v, pH 6.4). After column switching, separation was performed on a Shiseido CD-ph chiral column (5 μm, 150 mm × 4.6mm i.d.) using phosphate buffer:methanol (45:55, v/v, pH 5.0) as mobile phase. The limit of quantitation (LOQ) was 5 ng/mL for all analytes with intra- and inter-day precisions (as coefficient of variation) of <9.5% and <9.6%, respectively for all analytes. The present method was successfully applied to a chiral pharmacokinetic study of omeprazole in human volunteers with different CYP2C19 genotypes. The results show that the formation of (R)-5-hydroxyomeprazole gives the best correlation with CYP2C19 genotype.  相似文献   

8.
Lifibrol, a new drug for the treatment of hypercholesterolemia, contains a stereogenic center bearing a secondary alcohol group. A normal-phase achiral–chiral HPLC separation of the enantiomers of lifibrol and two of its metabolites was developed and validated for quantitation in dog plasma. A silica and a Chiralcel OD-H column were operated in series and all six enantiomeric components and internal standard were directly separated. An initial solid-phase extraction (phenyl) clean-up step and a column-switching step to eliminate late-eluting compounds were also utilized. The solid-phase extraction step was automated using a robotic system. Assay development, validation, and application of the method to a bioavailability study of the racemate and enantiomers of lifibrol in dogs are described. The lower limit of quantitation was 0.0125 μg/ml for each enantiomer of lifibrol using 200 μl of dog plasma with UV detection (255 nm). In dog plasma following oral or intravenous administration of the racemate, the (R)/(S) ratio of the enantiomers of lifibrol was greater than one and increased with time. Following administration of the individual enantiomers, chiral inversion of the (S)-enantiomer but not the (R)-enantiomer was observed. © 1994 Wiley-Liss, Inc.  相似文献   

9.
M Enquist  J Hermansson 《Chirality》1989,1(3):209-215
A method for the determination of (R)- and (S)-atenolol in human plasma and urine is described. The enantiomers of atenolol are extracted into dichloromethane containing 3% heptafluorobutanol followed by acetylation with acetic anhydride at 60 degrees C for 2 h. The acetylated enantiomers were separated on a chiral alpha 1-AGP column. Quantitation was performed using fluorescence detection. A phosphate buffer pH 7.1 (0.01 M phosphate) containing 0.25% (v/v) acetonitrile was used as mobile phase. The described procedure allows the detection of less than 6 ng of each enantiomer in 1 ml plasma. The relative standard deviation is 4.4% at 30 ng/ml of each enantiomer in plasma. The plasma concentration of (R)- and (S)-atenolol did not differ significantly in two subjects who received a single tablet of racemic atenolol. The R/S ratio of atenolol in urine was approximately 1.  相似文献   

10.
The in vitro human serum albumin binding characteristics of the enantiomers of the major metabolites of warfarin [6-hydroxywarfarin (6-HW), 7-hydroxywarfarin (7-HW), (S)-warfarin alcohols [(S,S)- and (S,R)-WA], and (R,S)-warfarin alcohol [(R,S)-WA]] have been studied, using a stereospecific HPLC assay. Warfarin metabolites are less bound both within plasma and a 40 g/liter solution of human serum albumin than the enantiomers of warfarin. The reduced warfarin metabolites have a lower fraction unbound [1.33% for (S,R)-WA, 2.09% for (S,S)-WA, and 1.04% for (R,S)-WA] than hydroxylated metabolites [3.24% for (R)-6-HW, 4.26% (S)-6-HW, 4.49% for (R)-7-HW and 4.27% for (S)-7-HW] to HSA. Phenylbutazone produced a concentration-dependent increase in the unbound fraction of all metabolites. It was possible to predict the unbound fraction of warfarin metabolites based on the unbound fraction of warfarin enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Recently we synthesized a naphthalene analog of medetomidine, 4-[1-(1-naphthyl)ethyl]-1H-imidazole hydrochloride (1), and found it to be highly potent in adrenergic systems. The separation of optical isomers of this naphthalene analog was achieved by using the isomers of tartaric acid. The optical purities of the isomers were determined by HPLC using a chiral column. Using X-ray analysis the (+)-isomer was determined to have the S absolute configuration. It has been reported that the (+)-isomer of medetomidine (2) is the most potent enantiomer on alpha 2-adrenergic receptors. There were both qualitative and quantitative differences in biological activities of the optical isomers of 1 in alpha 1- and alpha 2-adrenergic receptor systems of guinea pig ileum and human platelets. (+)-(S)-1, but not (-)-(R)-1 was a selective agonist of alpha 2-mediated responses in ileum whereas (-)-(R)-1 was more potent than (+)-(S)-1 as an inhibitor of alpha 2-mediated platelet aggregation.  相似文献   

12.
Achiral and chiral HPLC methods were developed for clinafloxacin, a quinolone antimicrobial agent. For achiral assay, analytes were isolated from plasma by precipitating plasma proteins. Separation was achieved on a C18 column using an isocratic eluent of ion pairing solution–acetonitrile (80:20, v/v) at 1.0 ml/min with UV detection at 340 nm. The ion pairing solution was 0.05 M citric acid, 1.15 mM tetrabutylammonium hydroxide and 0.1% ammonium perchlorate. Inter-assay accuracy was within 4.9% with an inter-assay precision of 3.7% over a quantitation range of 0.025 to 10.0 μg/ml. For chiral assay, analytes were isolated from plasma by solid-phase extraction. Separation was achieved on a Crownpak CR(+) column using an isocratic eluent of water–methanol (88:12, v/v) containing 0.1 mM decylamine at 1.0 ml/min with UV detection at 340 nm. Perchloric acid was added to adjust pH to 2. Inter-assay accuracy was within 3.5% with a inter-assay precision of 5.4% over a quantitation range of 0.040 to 2.5 μg/ml.  相似文献   

13.
Coumadin (R/S-warfarin) is a commonly prescribed anticoagulant for over ~20 million Americans. Although highly efficacious, positive clinical outcomes during warfarin therapy depend on maintaining a narrow therapeutic range for the drug. This goal is challenging due to large inter-individual variability in patient response, which has been attributed to diversity in drug metabolism. Warfarin is given as a racemic mixture and evidence suggest differences of R and S-warfarin in their therapeutic activities and metabolism. Previous investigation of warfarin metabolism has been hampered by the inability to quantify the individual enantiomers. To overcome this limitation a multi-mode LC-MS/MS method is reported. This strategy combines phenyl based reverse phase chromatography with chiral phase chromatography prior to quantitation by liquid chromatography tandem mass spectrometry. This approach was made possible through advances in UPLC technology producing narrow peaks suitable for transferring to a second column. The reported method separated individual R and S enantiomers of hydroxywarfarin and warfarin. All four possible isomers of 10-hydroxywarfarin were resolved to reveal unprecedented insights into the stereo-specific metabolism of warfarin. Characterization of the method demonstrated that it is robust and sensitive with inter-day coefficients of error between <7% and a detection limit of 2 nM in sample or 10 fmol on column for each analyte. Individual metabolites may be suitable surrogate biomarkers or predictive markers that predict warfarin dose, adverse interactions, or other important clinical outcomes during anticoagulant therapy. Consequently, the metabolite profiles obtained through this dual phase UPLC-MS/MS method are expected to increase our understanding of the role warfarin metabolism plays in patient response to therapy and yield new strategies to improve patient outcomes.  相似文献   

14.
I Fitos  J Visy  A Magyar  J Kajtár  M Simonyi 《Chirality》1990,2(3):161-166
The binding of the title benzodiazepine enantiomers and its modulation by warfarin and bilirubin were studied by chromatography on human serum albumin (HSA) immobilized on Sepharose 4B, and also by a combination of ultrafiltration and circular dichroism (UF-CD) methods. In the absence of warfarin and bilirubin the binding of the benzodiazepine was not stereoselective. (S)-Benzodiazepine and (S)-warfarin mutually increased the binding of each other, while the binding of (R)-benzodiazepine was preferentially enhanced on HSA saturated with bilirubin.  相似文献   

15.
Ginkgo biloba extract (GBE) is a popular herbal ingredient used worldwide, but it is reported to induce bleeding as a serious adverse event. In this study we examined whether GBE induced spontaneous bleeding or accelerated warfarin anticoagulation via herb-drug interaction. Mice were given GBE or various active components of GBE orally for 5 days and blood coagulation parameters and hepatic cytochrome P450 enzymes (CYPs) were measured. Mice also received warfarin (racemate, (S)- or (R)-enantiomer) for the last 3 days of the 5-day regimen to examine GBE-warfarin interactions. Neither GBE (up to 1000 mg/kg) nor ginkgolide B (up to 140 mg/kg), a platelet-activating factor antagonist, influenced blood coagulation parameters. In contrast, GBE attenuated the anticoagulant action of warfarin. Bilobalide, a component of GBE that markedly induced hepatic CYPs including (S)-warfarin hydroxylase, showed similar effects. For (S)-warfarin, the anticoagulation action and the interaction with GBE was clear, while the influence on metabolism was greater for (R)-warfarin than for (S)-warfarin, which corresponded to the CYP types induced by GBE. These results suggest that GBE and ginkgolide B have no influence on blood coagulation in vivo, and that GBE attenuates the anticoagulation action of warfarin via induction of hepatic CYPs by bilobalide.  相似文献   

16.
Copper(II) complexes of (S)-phenylalaninamide have been successfully used for the direct enantiomeric separation of unmodified (R,S)-α-hydroxy acids in reversed phase high-performance liquid chromatography (RP-HPLC). The effect of various parameters (pH, eluent polarity, selector concentration) on enantioselectivity is discussed. Evidence is provided that a mechanism of ligand exchange is actually occurring during the chromatographic separation. The method is very convenient and easy to use, and the chiral selector is commercially available and can be recovered at the end of the analysis. A conventional achiral RP-ODS-2 column is used and no pretreatment of the samples is required. This method allows the accurate determination of the enantiomeric excess of α-hydroxy acids in synthetic and biological samples. © 1995 Wiley-Liss, Inc.  相似文献   

17.
A sensitive and reproducible HPLC method utilizing a commercially available chiral α1-acid glycoprotein (AGP) phase has been developed to separate and quantify the enantiomers of nicotine. The method is suitable for routine use as indicated by column life. The quantification of (R/S:0.05/99.95)-nicotine or (R/S:99/1)-nicotine was possible. In addition, the separation or at least partial separation of the enantiomers of nornicotine and nornicotine-derived compounds was achieved. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Fitos I  Visy J  Kardos J 《Chirality》2002,14(5):442-448
Kinetic and equilibrium binding studies were performed on the interaction of warfarin enantiomers with human serum albumin (HSA) in the absence and presence of lorazepam acetate (LoAc) enantiomers. Binding kinetics were followed by recording changes in the fluorescence of warfarin upon binding to HSA using the stopped-flow technique. The binding of (R)-warfarin displayed an exponentially increasing fluorescence, satisfying the two-step mechanism reported previously for the racemate, i.e., a diffusion controlled pre-equilibrium is followed by a slower rearrangement of the complex. In the case of (S)-warfarin, the signal was biphasic: a fast fluorescence enhancement was followed by a slow decline. The different kinetic features indicate that the equilibrium conformations of the [(S)-warfarin-HSA] and [(R)-warfarin-HSA] complexes are achieved via different mechanisms. The phenomenon was seen in buffers of different pH and compositions. Equilibrium binding measurements indicated significantly lower molar intrinsic fluorescence for the (S)-warfarin complex, suggesting differences in the microenvironments of the bound enantiomers. In the presence of (S)-LoAc, the allosterically enhanced binding of (S)-warfarin manifested itself in accelerated relaxation kinetics. In accordance with the low molar intrinsic fluorescence determined for the stable ternary complex, the amplitude of the decline in fluorescence became larger.  相似文献   

19.
Guihen E  Hogan AM  Glennon JD 《Chirality》2009,21(2):292-298
In this research, a capillary electrophoretic method for the fast enantiomeric resolution of (R,S)-naproxen was investigated. Method development involved variation of applied potential, buffer concentration, buffer pH, and cyclodextrin concentration. The optimum electrophoretic separation conditions were 110 mM sodium acetate run buffer (pH 6.0), 30 mM methyl-beta-cyclodextrin, 20% (v/v) acetonitrile, 25 degrees C. The total length of capillary was 48 cm, (50 microm I.D.) with ultra violet (UV) detection at 232 nm. Using these conditions, the number of theoretical plates was close to one million (896,000/m). The possibility of achieving a fast chiral separation of (R,S)-naproxen on a microchip of 2.5 cm in length was investigated. Complete enantiomeric resolution of naproxen was achieved in less than 1 min, on this microchip platform, with linear imaging UV detection. This system had the advantage of real-time separation monitoring, so that enantiomeric resolution could be visually observed, and high-speed chiral analysis was realized. The microchip electrophoresis (MCE) separation was compared with the capillary electrophoresis (CE) separation with regards to speed, efficiency, separation platform, and precision. This work highlights the potential of CE and MCE in future chiral separations.  相似文献   

20.
Enantioselective degradation of warfarin in soils   总被引:1,自引:0,他引:1  
Lao W  Gan J 《Chirality》2012,24(1):54-59
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号