首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

2.
Summary Brassica napus and B. nigra were combined via protoplast fusion into the novel hybrid Brassica naponigra. The heterokaryons were identified by fluorescent markers and selected by flow sorting. Thirty hybrid plants were confirmed by isozyme analysis to contain both B. nigra and B. napus chromosomes; of these, 20 plants had the sum of the parental chromosome numbers. A non-random segregation of the chloroplasts was found in the hybrids. Of 14 hybrid plants investigated, all had the B. napus type of chloroplast. The resistance to Phoma lingam found in the B. nigra cultivar used in the fusion experiments was expressed in 26 of the hybrid plants. The hybrids obtained in this study contain all of the three Brassica genomes (A, B and C) and have thus created unique possibilities for genetic exchanges between the genomes. Since most of the plants were fertile as well as resistant to P. lingam, they have been incorporated into conventional rapeseed breeding programs.  相似文献   

3.
Summary The selective property of sirodesmin PL, a toxin produced by Phoma lingam, was studied on protoplasts, cell aggregates, leaves and roots. Directly after isolation, protoplasts from all the different Brassica accessions were sensitive when treated with toxin in a concentration higher than 1 M. When more differentiated plant tissue. i.e. cell aggregates, leaves or roots, were investigated, insensitivity to the toxin was found in the plant material resistant to P. lingam, while the plant material susceptible to P. lingam was sensitive. The results reveal that a clear correlation between resistance to P. lingam and insensitivity to sirodesmin PL is present, and that the toxin can be used to distinguish resistant plant material from susceptible both in vivo and in vitro.  相似文献   

4.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

5.
Summary With the idea to develop a selection system for asymmetric somatic hybrids between oilseed rape (Brassica napus) and black mustard (B. nigra), the marker gene hygromycin resistance was introduced in this last species by protoplast transformation with the disarmed Agrobacterium tumefaciens strain C58 pGV 3850 HPT. The B. nigra lines used for transformation had been previously selected for resistance to two important rape pathogens (Phoma lingam, Plasmodiophora brassicae). Asymmetric somatic hybrids were obtained through fusion of X-ray irradiated (mitotically inactivated) B. nigra protoplasts from transformed lines as donor with intact protoplasts of B. napus, using the hygromycin resistance as selection marker for fusion products. The somatic hybrids hitherto obtained expressed both hygromycin phosphotransferase and nopaline synthase genes. Previous experience with other plant species had demonstrated that besides the T-DNA, other genes of the donor genome can be co-transferred. In this way, the produced hybrids constitute a valuable material for studying the possibility to transfer agronomically relevant characters — in our case, diseases resistances — through asymmetric protoplast fusion.  相似文献   

6.
Summary Asymmetric somatic hybrids were obtained by fusion of Solanum tuberosum (PDH40) protoplasts with 300- or 500-Gy irradiated protoplasts of S. brevidens. These radiation doses were sufficient to prevent the growth of the S. brevidens protoplasts. Putative hybrids were selected on the basis of phenotype from regenerated shoots and identified with a S. brevidens-specific probe. From these, 31 asymmetric hybrids were confirmed by morphological characteristics, isoenzyme patterns and RFLP analysis. The morphology of the asymmetric hybrids was intermediate between that of S. tuberosum and symmetric hybrids of both species (obtained without irradiation treatment). Chromosome counts from 17 asymmetric hybrids showed that the chromosome number of the hybrids ranged from 31 to 64. The asymmetric hybrids probably had one or two genome complements (i.e. either 24 or 48 chromosomes) from S. tuberosum and 7–22 chromosomes from S. brevidens. There was no clear correlation between the radiation dose and the degree of elimination of the S. brevidens genome.  相似文献   

7.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

8.
Summary Intergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.  相似文献   

9.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

10.
Summary We have previously reported production of somatic hybrids between B. oleracea and B. campestris by fusion of B. oleracea protoplasts with X-irradiated B. campestris protoplasts, in order to transfer a part of the B. campestris genome into B. Oleracea. Our previous analysis of morphology, chromosome number, and isozyme patterns of the hybrids suggested that they are asymmetric in nature. To obtain further evidence for the asymmetric nature of the hybrids, we isolated B. campestris-specific repetitive sequences and used them for in situ hybridization of the chromosomes of the hybrids. The repetitive DNA probes could specifically identify 8 out of 20 chromosomes of the B. campestris genome, and analysis of the hybrids indicates that 1–3 chromosomes of B. campestris are lacking in all five hybrids examined, giving clear evidence for the asymmetric nature of the hybrids. Furthermore, in situ hybridization revealed that some of the abnormal chromosomes observed in the hybrids are generated by rearrangements of B. Campestris chromosomes caused by X-irradiation. Altogether, our study indicates that in situ hybridization using species-specific repetitive sequences is a useful tool to analyze chromosomal compositions of various types of hybrids obtained by cell fusion or conventional methods.  相似文献   

11.
O. Schieder 《Planta》1977,137(3):253-257
Following fusion between protoplasts from two different chlorophyll-deficient diploid mutants of Datura innoxia Mill. it was possible to select 33 green hybrid calli on agar culture medium. Half of the somatic hybrids gave rise to leaves and some to shoots. The chromosome number of 20 somatic hybrids was determined: five were tetraploid, eight hexaploid, three octoploid, and four showed an aneuploid chromosome number. After transfer of the shoots of the five tetraploid hybrids to soil they developed roots. In control experiments in which protoplasts of the two mutants were cultured either as a mixture without being treated with the fusion agent, or cultured separately, no green callus could be obtained. Similar experiments involving protoplasts from one chlorophyll-deficient mutant of Datura innoxia, on the one hand, and those from similar mutants of Nicotiana sylvestris Spegazz. et Comes and Petunia hybrida, on the other, yielded no green somatic hybrid although hybrid protoplasts could be detected.  相似文献   

12.
Summary The fusion of gametic protoplasts with somatic protoplasts giving rise to gametosomatic hybrid plants was investigated. Gametosomatic hybrid plants were regenerated following the fusion of nitrate reductase deficient (Nr) Nicotiana tabacum Nia-130 leaf mesophyll protoplasts with N. glutinosa tetrad protoplasts. The resulting plants were confirmed as hybrids, based on leaf and floral morphology, chromosome number, leaf esterase and leaf callus peroxidase zymograms and Fraction-1-protein analysis. The five gametosomatic hybrid plants had the expected pentaploid, but functionally triploid chromosome number of 3n=5x=60. The relevance of triploid gametosomatic hybrids in facilitating limited gene transfer, is discussed. The utilisation of tetrads as a generally available source of haploid protoplasts for fusion studies is proposed.  相似文献   

13.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

14.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

15.
Summary Asymmetric somatic hybrid plants were recovered after fusing irradiated mesophyll protoplasts of donor Lycopersicon esculentum × L. pennellii (EP) interspecific hybrid with callus-derived protoplasts of recipient Solanum lycopersicoides. EP plant A54 had been previously transformed by an agrobacterium vector, and the T-DNA insert mapped to the L. esculentum chromosome 12. The T-DNA insert conferred kanamycin resistance to EP that was subsequently used to select cell fusion products and recover asymmetric hybrid plants that retained tagged chromosome 12. Doses of 50- and 100-Gy irradiation promoted the elimination of only a few donor chromosomes. At 200 Gy, the regenerated plants had ploidy levels higher than tetraploid. However, the T-DNA tagged chromosome 12 was always retained in the asymmetric hybrid plants tested. Likewise, all plants from the 100-Gy series, with the exception of number 160, were mixoploid in the root-tip cells. Such mixoploid asymmetric somatic hybrids could be stabilized by inducing adventitious shoots on leaf strips cultured on shoot regeneration medium containing kanamycin. The asymmetric hybrid plants did not produce viable seed when self-pollinated or backcrossed to tomato or S. lycopersicoides. Present address: Department of Biology, University College of London, Gower Street, London, UK  相似文献   

16.
Summary Asymmetric somatic hybrids were recovered following fusion of tomato leaf mesophyll protoplasts with irradiated protoplasts isolated from Lycopersicon pennellii suspension cells. The asymmetry was determined by scoring the regenerants at between 20 and 24 loci using isozymes and restriction fragment length polymorphisms. In addition, three quantitative traits, fruit size, leaf shape, and stigma exsertion, were measured in the regenerants. The recovery of asymmetric somatic hybrids was as high as 50% of the regenerants, and there was no requirement for the transfer of a selectable marker gene from the irradiated partner. The amount of nuclear DNA transferred from the irradiated protoplast fusion partner was found to be inversely proportional to the radiation dose. It was possible to recover tomato asymmetric somatic hybrids which were self-fertile and contained limited amounts of genetic information from L. pennelli.  相似文献   

17.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

18.
Fertile somatic hybrids were obtained via symmetric electrofusion of protoplasts from two combinations of tetraploid cotton (G. hirsutum cv. Coker 201, AD genome) and diploid wild cottons G. bickii (G genome) and G. stockii (E genome), respectively. Observation by morphological, flow cytometric analysis, chromosome counting and RAPD analysis of the tested hybrids of Coker 201 + G. bickii and Coker 201 + G. stockii confirmed the regenerated plants as hybrid status. Cytological investigation of the metaphase root-tip cells revealed there were 78 chromosomes in the hybrids. Flow cytometric analysis showed the tested plants had a relative DNA contents close to the total DNA contents of the two parents. RAPD analysis revealed the hybrids contained specific genomic fragments from both fusion partners, further confirmed their hybridity. The morphology of the hybrids was intermediate between the two fusion partners. The hybrid plants were successfully transferred to the soil, and they bloomed and set bolls. It is sure that the new hexaploids developed by cell fusion would contribute to cotton breeding through backcrossing with the elite genotypes of G. hirsutum.  相似文献   

19.
Summary Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and -(-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondria populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.  相似文献   

20.
Zhou C  Xia G  Zhi D  Chen Y 《Planta》2006,223(4):714-724
In this paper, we describe how Bupleurum scorzonerifolium/Triticum aestivum asymmetric somatic hybrids can be exploited to study the wheat genome. Protoplasts of B. scorzonerifolium Willd were irradiated with ultraviolet light (UV) and fused with protoplasts of common wheat (T. aestivum L.). All cell clones were similar in appearance to those of B. scorzonerifolium, while the regenerated plantlets were either intermediate or B. scorzonerifolium-like. Genotypic screening using isozymes showed that 39.3% of cell clones formed were hybrid. Some of the hybrid cell clones grew vigorously, and differentiated green leaves, shoots or plantlets. DNA marker analysis of the hybrids demonstrated that wheat DNA was integrated into the nuclear genomes of B. scorzonerifolium and in situ karyotyping cells revealed that a few wheat chromosome fragments had been introgressed into B. scorzonerifolium. The average wheat SSR retention frequency of the RH panel was 20.50%, but was only 6.67% in fusions with a non-irradiated donor. B. scorzonerifolium chromosomes and wheat SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2.5–3.5 years. We suggest the UV-induced asymmetric somatic hybrids between B. scorzonerifolium Willd and T. aestivum L. have the potential for use in the construction of an RH map of the wheat genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号